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Introduction. When faced with the outbreak of a novel
epidemic like COVID-19, rapid response measures are re-
quired by individuals as well as by society as a whole
to mitigate the spread of the virus. During this initial,
time-critical period, neither the central epidemiological
parameters, nor the effectiveness of measures like cancella-
tion of public events, school closings, and social distancing
are known.

Rationale. As one of the key epidemiological parame-
ters, we infer the spreading rate λ from confirmed COVID-
19 case numbers at the example in Germany by combin-
ing Bayesian inference with an SIR (Susceptible-Infected-
Recovered) model from compartmental epidemiology. Our
analysis characterizes the temporal change of the spread-
ing rate and, importantly, allows us to identify potential
change points and to provide short-term forecast scenarios
based on various degrees of social distancing. A detailed,
educational description is provided in the accompany-
ing paper, and the model, inference, and prediction are
available on github. While we apply it to Germany, our
approach can be readily adapted to any other country or
region.

Results. In Germany, political interventions to contain
the outbreak were implemented in three steps over three
weeks: Around March 9, large public events like soccer
matches were cancelled. On March 16, schools and other
educational institutions as well as many non-essential
stores were closed. One week later, on March 23, a far-
reaching contact ban (“Kontaktsperre”), which includes
the prohibition of even small public gatherings as well as
the further closing of restaurants and non-essential stores,
was imposed by the government authorities.

From the observed case numbers of COVID-19, we
can quantify the impact of these measures on the spread
(Fig. 1). As of April 10, we have evidence of the first
change point in the spreading rate from λ0 = 0.40 (95 %
Confidence interval (CI: [0.33,0.49]) to λ1 = 0.24 (CI:
[0.20,0.28]), which occurred around March 8 (CI: March
5 to March 10). Moreover, we have evidence for a second
change point to λ2 = 0.15 (CI: [0.12,0.19]), which occurred
around March 16 (CI: March 15 to March 18). Both
changes in λ slowed the spread of the virus, but still
imply exponential growth (Fig. 1, red and orange traces).
To contain the disease spread, and turn from exponential

growth to a decline of novel cases, a further decrease in λ
is necessary. We have first indications that this transition
has been reached by the third change-point around March
23 (CI: March 21 to March 25).

With the start of this third change point, λ takes ap-
proximately the critical value where the spreading rate λ
balances the recovery rate µ, i.e. the effective growth rate
λ∗ = λ− µ ≈ 0 (Fig. 1, green traces). The case numbers
in the coming week will provide more information on its
precise value. Importantly, λ∗ = 0 presents the watershed
between exponential growth or decay. Together with the
delay of approximately two weeks between infection and
first inference of λ∗, any future intervention such as lifting
restrictions therefore warrants careful consideration.

Our detailed analysis shows that, in the current phase,
reliable short- and long-term forecasts are very difficult,
if not impossible: In Fig. 1C,D already the three example
scenarios quickly diverge from each other, and conse-
quently span a huge range of future case numbers. Thus,
any uncertainty on the magnitude of our social distancing
in the past two weeks can have a major impact on the case
numbers in the next two weeks. Beyond two weeks, the
case numbers depend on our future behavior, for which
we have to make explicit assumptions. We illustrate how
the precise magnitude and timing of potential change
points impact the forecast of case numbers (see Fig. 2,
main paper).

Conclusions. We developed a Bayesian framework to
infer the spreading rate λ and the timing and magnitude
of change points. Thereby, the efficiency of political and
individual measures for social distancing and containment
can be assessed in a timely manner. We find first evidence
for a successive decrease of the spreading rate in Germany
around March 9 and around March 16, which significantly
reduced the magnitude of exponential growth, but was
not sufficient to turn growth into decay. The development
in the coming week will reveal the efficiency of the contact
ban initiated on March 23. In general, our analysis code
may help to infer the efficiency of measures taken in
other countries and inform policy makers about tightening,
loosening and selecting appropriate rules for containment.
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FIG. 1. [Our paper uses data available as of April 10. On our github repository you find the current figure versions.]
Inference of change points in the spreading rate λ from confirmed COVID-19 cases in Germany. A: Prior (blue) and posterior
(orange) distributions for five of the central parameters of an SIR model with two change points (at time t1 and t2), where the
spreading rate changes from λ0 → λ1 → λ2. B: The inferred growth rate λ∗, i.e. the difference between spreading and recovery
rate (λ∗ = λ− µ) for an SIR model that assumes scenarios with one, two or three change points (red, orange, green; fitted to
case reports until March 25, April 1 and April 9, respectively). The timing of the inferred change points corresponds well to
the timing of the governmental interventions in Germany (depicted as ∗). C,D: The model-fit of the new confirmed cases and
(cumulative) total confirmed cases is depicted for the models with one, two or three change points. The three scenarios depend
strongly on whether one includes the third change point or not: the number of new confirmed cases grow exponentially (red,
orange) or are approximately constant (green). This illustrates that the future development depends strongly on our distancing
behavior. B,C: Note the delay D between change point (i.e. change in spreading behavior) and observation of confirmed cases
of almost two weeks.
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As COVID-19 is rapidly spreading across the globe, short-term modeling forecasts provide time-
critical information for decisions on containment and mitigation strategies. A main challenge for
short-term forecasts is the assessment of key epidemiological parameters and how they change
as first governmental intervention measures are showing an effect. By combining an established
epidemiological model with Bayesian inference, we analyze the time dependence of the effective growth
rate of new infections. For the case of COVID-19 spreading in Germany, we detect change points
in the effective growth rate that correlate well with the times of publicly announced interventions.
Thereby, we can (a) quantify the effects of recent governmental measures to mitigating the disease
spread, and (b) incorporate the corresponding change points to forecast future scenarios and case
numbers. Our code is freely available and can be readily adapted to any country or region.

f

INTRODUCTION

During the initial outbreak of an epidemic, reliable short-term forecasts are key to estimate required medical
capacities, and to inform and advice the public and decision makers [1]. During this initial phase, three tasks are of
particular importance to provide time-critical information for crisis mitigation: (1) establishing central epidemiological
parameters such as the basic reproduction number that can be used for short-term forecasting; (2) simulating the
effects of different possible interventions aimed at the mitigation of the outbreak; (3) estimating the actual effects of
the measures taken – to rapidly adjust them and to adapt short-term forecasts. Tackling these tasks is challenging
due to the large statistical and systematic errors that are present during the initial stages of an epidemic with its low
case numbers. This is further complicated by the fact that mitigation measures are taken rapidly, while the outbreak
unfolds, but they take an effect only after an a priori unknown delay. To obtain reasonable parameter estimates
for short-term forecasting and policy evaluation despite these complications, any prior knowledge available needs
to be integrated into modeling efforts to reduce uncertainties. This includes knowledge about basic mechanisms of
disease transmission, recovery, as well as preliminary estimates of epidemiological parameters from other countries,
or from closely related pathogens. The integration of prior knowledge, the quantitative assessment of the remaining
uncertainties about epidemiological parameters, and the principled propagation of these uncertainties into forecasts is
the domain of Bayesian modeling and inference [2, 3].

Here, we draw on an established class of models for epidemic outbreaks: The Susceptible-Infected-Recovered (SIR)
model [4–7] specifies the rates with which population compartments change over time, i.e., with which susceptible
people become infectious, or infectious people recover. This simple model can be formulated in terms of coupled
ordinary differential equations (in mean field), which enable analytical treatment [8, 9] or fast evaluation (ideally
suited for Bayesian inference). Accordingly, SIR-like models have been used to model epidemic spreads, from Bayesian
Markov-Chain Monte Carlo (MCMC) parameter estimation [10–12] to detailed scenario discussions [13–16]. Recently,
this family of models also played a dominant role in the analyses of the global corona virus (SARS-CoV-2) outbreak,
from inference [17–19] to scenario forecast [20–27] to control strategies [28, 29].

We combine the SIR model with Bayesian parameter inference and augment the model by a time-dependent spreading
rate. The time dependence is implemented via potential change points reflecting changes in the spreading rate driven
by governmental interventions. Based on three distinct measures taken in Germany, we detect three corresponding
change points from reported COVID-19 case numbers. Already on April 1 we had reported evidence for the first
two change points, and predicted the third one [30]. Now, with data until April 9, we have evidence for all three
change points. First, the spreading rate decreased from 0.40 (CI [0.33,0.49]) to 0.24 (CI [0.20,0.28]), with this decrease
initiated around March 8 (CI [March 6, March 10]). This matches the cancellation of large public events such as trade
fairs and soccer matches. Second, the spreading rate decreased further to 0.15 (CI [0.12,0.19]) initiated around March

All rights reserved. No reuse allowed without permission. 
(which was not certified by peer review) is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. 

The copyright holder for this preprintthis version posted April 16, 2020. .https://doi.org/10.1101/2020.04.02.20050922doi: medRxiv preprint 

https://doi.org/10.1101/2020.04.02.20050922


4

16 (CI [March 15, March 18]). This matches the closing of schools, child-care facilities, and non-essential stores. Third,
the spreading rate decreased further to 0.10 (CI [0.07,0.13]) initiated around March 23 (CI [March 21, March 25]).
This corresponds well to the strict contact ban, which was announced on March 22. While the first two change points
were not sufficient to switch from growth of novel cases to a decline, the third change point probably brought this
crucial reversal.

Our framework is designed to infer the effectiveness of past measures and to explore potential future scenarios
with propagating the respective uncertainties. In the following we demonstrate the potential impact of timing and
magnitude of change points, and report our inference about the three past governmental interventions in Germany.
Our framework can be readily adapted to any other country or region. The code (already including data sources from
many other countries), as well as the figures are all available on Github [31].

BACKGROUND: INFERENCE OF CENTRAL EPIDEMIOLOGICAL PARAMETERS AND THE
EFFECTS OF INTERVENTIONS

In order to simulate the general effect of different possible interventions on the spread of COVID-19 in Germany, we
first focus on the initial phase of the outbreak where no serious mitigation measures were implemented. In the absence
of interventions, an epidemic outbreak can be described by SIR models with constant spreading rate (Methods). In
Germany, first serious interventions occurred around March 9 and affected the case reports with an observation delay,
a combination of incubation period with median 5 − 6 days [32] and a test delay (time until doctor is visited plus
test-evaluation time) that we assume to be about 2 days. Hence, we consider as initial phase the time period from
March 1 to March 15 in order to infer central epidemiological parameters. We then model the effects of interventions
as change points in the spreading rate (Methods) in order to simulate the effect of different possible interventions.

Bayesian inference for central epidemiological parameters during the initial phase of the outbreak

We perform Bayesian inference for the central epidemiological parameters of an SIR model using Markov-Chain
Monte Carlo (MCMC) sampling (Fig. 1). The central parameters are the spreading rate λ, a recovery rate µ, a
reporting delay D, and the number of initially infected people I0. We chose informative priors based on available
knowledge for λ, µ, and D, and uninformative priors for the remaining parameters (Methods). We intentionally kept
also the informative priors as broad as possible such that the data would constrain the parameters (Fig. 1).

As median estimates, we obtain for the spreading rate λ = 0.41, µ = 0.12, D = 8.6, and I0 = 19 (see Fig. 1D–H
for the posterior distributions and the CIs). Converted to the basic reproduction number R0 = λ/µ, we find a
median R0 = 3.4 (CI [2.4, 4.7]), which is consistent with previous reports that find median values between 2.3 and
3.3 [18, 33, 34]. Overall, the model shows good agreement for both new cases Ct (Fig. 1 A) and the cumulative cases∑t

t′=0 Ct′ (Fig. 1 B) with the expected exponential growth (linear in lin-log plot). The absolute deviation between data
and model (Fig. 1 C) is well captured by the case-number-dependent width of our likelihood (Methods) motivated by
demographic noise in mean-field models of spreading processes [35, 36]. The observed data are clearly informative about
λ, I0 and σ (indicated by the difference between the priors (gray line) and posteriors (histograms) in Fig. 1 D,I,H).
However, µ and D are largely determined by our prior choice of parameters (histograms match gray line in Fig. 1 E,G).
This is to be expected for the initial phase of an epidemic outbreak, which is dominated by exponential growth.

In order to quantify the impact of possible interventions, we concentrate on the effective growth of active infections
before and after the intervention. As long as the number of infections and recoveries are small compared to the
population size, the number of active infections per day can be approximated by an exponential growth (Fig. 1A,B)
with effective growth rate λ∗ = λ− µ (see Methods). As a consequence, λ and µ cannot be estimated independently.
This is further supported by a systematic scan of the model’s log-likelihood in the λ–µ space that shows an equipotential
line for the maximum likelihood (Fig. 1 J). This strongly suggests that the growth rate λ∗ is the relevant free parameter
with a median λ∗ = 28% (Fig. 1 I). The control parameter of the dynamics in the exponential phase is thus the
(effective) growth rate: If the growth rate is larger than zero (λ > µ), case numbers grow exponentially; if the growth
rate is smaller than zero (λ < µ), the recovery dominates and the new confirmed cases decrease. The two different
dynamics (supercritical and subcritical, respectively) are separated by a critical point at λ∗ = 0 (λ = µ) [36].
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FIG. 1. Inference of central epidemiological parameters of the SIR model during the initial onset period, March 1–15. A:
Number of new cases over time, and B: total number of cases over time (cumulative) increase exponentially. C: Absolute
difference between model and data is captured by the width of our likelihood, scaling with the square root of new cases σ

√
Ct

(orange line). D-I: Prior (gray) and posterior (orange) distributions for all model parameters: estimated spreading rate λ,
recovery rate µ, reporting delay D between infection date and reporting date, number of cases I0 at the start of the simulation,
scale-factor σ of the width of the likelihood distribution, and the effective growth rate λ∗ = λ− µ. J: Log-likelihood distribution
for different combinations of λ and µ. A linear combination of λ and µ yield the same maximal likelihood (black line). White
dot: Inference did not converge.

Magnitude and timing of interventions matter for the mitigation of the outbreak

We simulate different, hypothetical interventions following the initial phase in order to show that both, the amount
of change in behavior (leading to a change in spreading rate λ, Fig. 2 A,B) and the exact timing of the change
(Fig. 2 C,D) determine the future development. Hypothetical interventions build on the inferred parameters from the
initial phase (Fig. 1, in particular median λ0 = 0.41 and median µ = 0.12) and were implemented as change points
in the spreading rate from the inferred λ0 to a new value λ1. With such a change point, we model three potential
scenarios of public behavior: (I) No social distancing; Public behavior is unaltered and the spread continues with
the inferred rate (λ1 = λ0 with median λ1 = 0.41 > µ). (II) Mild social distancing; The spreading rate decreases
to 50%, (λ1 = λ0 / 2 with median λ1 = 0.21 > µ). Although people effectively reduce the number of contacts by a
factor of two in this second scenario, the total number of reported cases continues to grow alongside scenario (I) for the
time period of the reporting delay D (median D = 8.6 from initial phase, see below for a more constrained estimation).
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FIG. 2. The timing and effectiveness of interventions strongly impact future COVID-19 cases. A, B: We assume three different
scenarios for interventions starting on March 16: (I) no social distancing – red, (II) mild social distancing – orange, or (III)
strict social distancing – green. C, D: We also analyzed how a delayed restriction impacts case numbers: Strict restrictions
starting on March 16 (green), or five days later or earlier. A delay (or advance) of five days in implementing restrictions has a
major impact on the expected case numbers. E, F: Comparison of the time span over which interventions ramp up to full effect.
For all ramps that are centered around the same day, the resulting case numbers are fairly similar.

Also, we still observe an exponential rise of new infections after the intervention becomes effective, because the growth
rate remains positive, λ∗1 = λ1 − µ > 0. (III) Strong social distancing; Here, the spreading rate decreases to 10%,
(λ1 = λ0 / 10 with median λ1 = 0.04 < µ). The assumptions here are that contacts are severely limited, but even
when people stay at home as much as possible, some contacts are still unavoidable. Even under such drastic policy
changes, no effect is visible until the reporting delay D is over. Thereafter, a quick decrease in daily new infections
manifests within two weeks (delay plus change point duration), and the total number of cases reaches a stable plateau.
Only in this last scenario a plateau is reached, because here the growth rate becomes negative, λ∗ < 0, which leads to
decreasing numbers of new infections.

Further more, the timing of an intervention matters: Apart from the strength of an intervention, its onset time has
great impact on the total case number (Fig. 2 C,D). For example, focusing on the strong intervention (III) — where
a stable plateau is reached — the effect of advancing or delaying the change point by just five days leads to more
than a three-fold difference in cumulative cases. While we find that the timing of an intervention has great effect on
case numbers, the duration over which the change takes place has only minor effect — if the intervals of change are
centered around the same date. In Fig. 2 E,F we illustrate the adjustment of λ0 → λ1 having durations of 14, 7 and 1
day(s). Note that the change point duration is a simple way to incorporate variability in individual behavior, and is
not linked to the reporting delay D.

RESULTS

We incorporate the effect of governmental interventions into our model by introducing flexible change points in the
spreading rate (see Methods). During the COVID-19 outbreak in Germany, governmental interventions occurred in
three stages from (i) the cancellation of large events with more than 1000 participants (around March 9), through (ii)
closing of schools, childcare centers and the majority of stores (in effect March 16), to (iii) the contact ban and closing
of all non-essential stores (in effect March 23). The aim of all these interventions was to reduce the (effective) growth
rate λ∗ = λ − µ. As soon as the growth rate becomes negative (λ∗ < 0), the number of new confirmed infections
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FIG. 3. The German COVID-19 data (blue diamonds) until April 9 indicate three change points, consistent with three major
governmental interventions. A: Time-dependent model estimate of the effective spreading rate λ∗(t). B: Comparison of daily
recorded new cases and the model (green solid line for median fit with 95% confidence intervals, green dashed line for median
forecast with 75% and 95% confidence intervals); inset: same data in log scale. C: Comparison of total recorded cases and the
model (same representation as in B); inset: same data in log scale. D-F: Priors (gray lines) and posteriors (green histograms)
of all model parameters; inset values indicate the median and 95% confidence intervals of the posteriors. For the same model
with one or two change points, please see the corresponding figures in the SI (Fig. S1 and S2).

decreases after the respective reporting delay.

Detecting change points in the spreading rate — and quantifying the amount of change as quickly as possible —
becomes a central modeling challenge when short-term forecasts are required. To address this challenge, we assume an
initial spreading rate λ0 (the exponential growth phase, cf. Fig. 1) and up to three potential change points motivated by
the German governmental interventions: The first change point (λ0 → λ1) is expected around March 9 (t1) as a result
from the official recommendations to cancel large events. A second change point (λ1 → λ2) is expected around March
16 (t2), when schools and many stores were closed. A third change point (λ2 → λ3) is expected around March 23 (t3),
when all non-essential stores were closed, and a contact ban was enacted. We expect the behavioral changes introduced
at these change points to unfold over a few days ∆ti, however, changes in duration can be partly compensated by
changes in the onset time ti (see Fig. 2 E,F, scenarios). We chose priors for all parameters based on the information
available to us up to March 28 (see Methods). On that date, the data were already informative about the first change
point, and thereby helped to inform our forecast scenarios.

The inferred parameters for the models with change points are consistent with the inferred parameters from the
exponential onset phase (Fig. 1, Fig. 3 & Figs. S1- S2), wherever parameters were comparable. In particular, all
estimated λ0 from models with multiple change points are compatible with the spreading rate during the exponential
onset phase (λ = 0.41, CI [0.32, 0.51], assuming a stationary λ until March 15, Fig. 1 A). Also the scale factor σ
and the number of initial infections I0 for the models with change points are fully consistent with the initial model
inference during the exponential onset phase (Fig. 1 F,H).
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TABLE I. Model comparison using leave-one-out (LOO) cross-validation. Lower LOO-scores represent a better match between
model and data.

Model LOO-score Effective number of parameters (pLOO)
zero change points 683± 12 4.09
one change point 629± 15 9.98
two change points 608± 16 7.84
three change points 602± 16 9.87

The models with two or three change points fit the observed data better than those with less change points

The model with three change points describes the data better than all other models, as indicated by the leave-one-out
(LOO) cross-validation-based Bayesian model comparison [37] (lowest LOO-score in Table I). However, the model with
two change points still has a comparable LOO-score within one standard deviation, which is expected since the present
data (as of April 9) just barely entered the regime of the third change point – based on the known timing of the third
intervention (March 23) and the estimate for the delay D (posterior median: 9.3 days). As expected, the models with
none or a single change point have LOO-scores that are at least about one standard deviation higher (worse) than
those of the best models and may be discarded.

When comparing our inference based on three change points to the number of confirmed cases, we find them to
largely match (Fig. 3 B,C). Note that the tell-tale transient decrease in the data, which are expected independently of
the weekend-related effects on sampling, are more evident in the raw number of newly confirmed cases (Fig. 3 B) than
in the cumulative report (Fig. 3 C). Such a transient decrease of new cases, before increasing again, originates from
changing an exponential growth rate over small time-interval in the model. It is consistent with the observed temporary
drop in newly confirmed cases and suggests a rapid implementation of mitigation measures by the public. However, we
also observed a spread in the data points that was somewhat larger than expected by the model. We assign this to
the fact that in the main model we did not incorporate an additional prior describing uncertainty and noise that is
introduced by fluctuations in reporting (less reports on weekends, availability of test kits, etc.) – however, we verified
that our results are consistent when we extend our main model to account for the week-related alterations (Fig. S3
and S5). Given these and other additional sources of noise, we consider the match of model and data convincing.

Change point detection quantifies the effect of governmental interventions on the outbreak of COVID-19 in
Germany

Ideally, detected changes can be related to specific mitigation measures, so that one gains an understanding about
the effectiveness of different measures (Fig. 3). Indeed, we found clear evidence for three change points in the
posterior distributions of the model parameters: First, λ(t) decreased from λ0 = 0.40 (with 95% confidence interval,
CI [0.33, 0.49]) to λ1 = 0.24 (CI [0.20, 0.28]). The date of the change point was inferred to be March 8 (CI [March 6,
March 10])]; this inferred date matches the timing of the first governmental intervention including cancellations of
large events, as well as increased awareness. After this first intervention, the (effective) growth rate λ∗(t) = λ(t)− µ
decreased by more than a factor 2, from median λ0 − µ = 0.3 to median λ1 − µ = 0.14, given that the recovery rate
was inferred as µ = 0.10 (CI [0.07, 0.14]). Second, λ(t) decreased from λ1 = 0.24 to λ2 = 0.15 (CI [0.12, 0.19]), which
is larger than our prior assumption. The date of the change point was inferred to be March 16 (95% CI [15, 18])];
this inferred date matches the timing of the second governmental intervention including closing schools and some
stores. After this second intervention, the median growth rate became λ∗(t) = λ2 − µ = 0.05 ≈ 0 and is thus in the
vicinity of the critical point, yet still positive. The first two interventions in Germany thereby mitigated the spread
by drastically reducing the growth rate, but the spread of COVID-19 remained exponential. Third, λ(t) decreased
from λ2 = 0.15 to λ3 = 0.10 (CI [0.07, 0.13]). The date of the change point was inferred to be March 23 (CI [21, 25])];
this inferred date matches the timing of the third governmental intervention including contact ban and closing of all
non-essential shops. Only after this third intervention, the median (effective) growth rate, λ∗(t) = λ3−µ = −0.009 < 0
(CI [−0.039, 0.015])], finally became minimally negative, pointing at a possible decrease in the number of new infections.
We can thus clearly relate the change points to the governmental interventions and quantify their mitigation effect.
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DISCUSSION

We presented a Bayesian approach for online-monitoring the effect of governmental interventions on the spread of an
epidemic outbreak. This approach enabled a timely inference of the central epidemiological parameters for Germany –
as well as three change points in the spreading rate – of an SIR model from the number of reported cases during the
COVID-19 outbreak. We showed that change points in the spreading rate affect the confirmed case numbers with
a delay of about two weeks (median reporting delay of D = 9.3 days plus a median duration of changes of 3 days).
Thereby, we were able to relate the inferred change points to the three major governmental interventions in Germany:
We found a clear reduction of the spreading rate related to each governmental intervention (Fig. 3), (i) the cancellation
of large events with more than 1000 participants (around March 9), (ii) the closing of schools, childcare centers and
the majority of stores (in effect March 16), and (iii) the contact ban and closing of all non-essential stores (in effect
March 23).

In absolute terms, the first two governmental interventions brought a reduction of the initial growth rate from
λ∗0 = 30% to 14% and then down to 5%. However, these numbers still implied exponential growth. Only with the third
intervention, i.e. the contact ban, we found first evidence that we have reached the transition in new case numbers
from growth to decay. The decay rate of about −1% (CI [−4%, 2%]) is close to zero. This still implies that already a
minor increase in the spreading rate may again switch the dynamics to the unstable regime with exponential growth.

We used a formal Bayesian model comparison in order to validate the presence of change points. Our model
comparison ruled out models with less than two change points (Tab. I,V). While this may seem trivial, it has important
consequences for making the short-term forecasts that decision makers rely on. Demonstrating and quantifying the
effect of change points in the past enables us to project the effects of recent change points, that are not apparent in
the observed case numbers yet, into future forecasts. Hence, it is important to look out for and identify potential
change points as early as possible, and incorporate them appropriately into forecasts.

The detection of change points and their interpretation depend crucially on an accurate estimate of the reporting
delay D. Therefore, the validity of its estimate should be evaluated. In our model D contains at least three distinct
factors: the biological incubation period (median 5-6 days) [32], an additional delay from first symptoms to symptoms
motivating a test (1-2 days) and possible delay before a testing results come in (1-2 days). The sum of these delays
seems compatible with our inferred median delay of D = 9.3 days, especially given the wide range of reported incubation
periods.

We chose to keep our main model comparatively simple, because of the small number of data points available during
an epidemic outbreak. With such a low number of data points only a limited number of parameters can be effectively
constrained. Hence, we chose to approximate a time-dependent spreading rate λ(t) by episodes of constant spreading
rates λi that are separated by three change points where a transition occurs. Our results show that this main model is
currently sufficient for Germany: While we introduced fairly broad priors on the spreading rates, we obtained fairly
narrow posterior distributions for each spreading rate λi (Fig. 3). We additionally evaluated obvious extensions of our
main model with three change points by excluding weekend data that may suffer from under-reporting (Fig. S3), and
by using the more involved model that includes the four classes: susceptible, exposed, infected, recovered (Fig. S4).
All of these models yield consistent results for the three change points, and all have LOO scores within one standard
error of each other. Thus, we consider our main model to be sufficient for case numbers in Germany at present.

Our framework can be easily adapted to other countries and enables one to incorporate future developments. For
other countries, or for forecasts within smaller communities (e.g. federal states or cities), additional details may
become important, such as explicit modeling of incubation time distributions [17, 38] (i.e. as done in Fig. S4) , spatial
heterogeneity [17, 21], isolation effects [20, 38], subsampling effects hiding undetected cases even beyond the reporting
delay [39, 40], or the age and contact structure of the population [26]. In countries where drastic changes in test
coverage are expected this will have to be included as well. The methodology presented here is capable in principle of
incorporating such details. It also lends itself to modeling of continuous drifts in the spreading rate, e.g. reflecting
reactions of the public to news coverage of a catastrophic situation, or people growing tired of mitigation measures.
Such further adaptations, however, can only be performed on a per-country basis by experts with an intimate knowledge
of the local situation. Our code provides a solid and extensible base for this. For Germany, several developments in
the near future may have to be included in the model. First, people may transiently change their behavior over the
Easter holidays; second, we expect a series of change points, as well as continuous drifts, with governments trying to
ease and calibrate mitigation measures.

Effective growth rates in Germany are still around zero and warrant careful consideration of future interventions. At
present, with all mitigation measures in place, effective growth rates are very close to zero – the watershed between
exponential growth or decay. Together with the delay of approximately two weeks between infection and case report
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this warrants utmost caution in easing restrictions for two reasons: First, easing restrictions too much will quickly
lead to renewed exponential growth; second, we would be effectively blind to this worsened situation for nearly two
weeks in which it will develop uninhibited. This may result in unwanted growth in case numbers beyond the level that
the health system can cope with – especially when the active cases have not gone down close to zero before lifting
restrictions, thus re-initiating growth from a high base level. Therefore, it is important to consider lifting restriction
only when the number of active cases are so low that a two-week increase will not pose a serious threat.

In conclusion, the presented Bayesian approach allows to detect and quantify the effect of recent governmental
interventions and – combined with potential subsequent interventions – to forecast future case number scenarios. Our
analysis highlights the importance of precise timing and magnitude of interventions for future case numbers. It also
stresses the importance of including the reporting delay D between the date of infection and the date of the confirmed
case in the model . The delay D, together with the time required to implement interventions causes a total delay
between an intervention and its visibility in the case numbers of about two weeks for COVID-19 in Germany. This
means that changes in our behavior today can only be detected in confirmed cases in two weeks. Combined with the
current spreading rate that is still around zero, the inferred spreading and observation dynamics warrant an extremely
careful planning of future measures.

MATERIALS AND METHODS

As a basis for our forecast scenarios, we use the differential equations of the well-established SIR (Susceptible-
Infected-Recovered) model. Case data comes from the COVID-19 data repository maintained by the Johns Hopkins
University Center for Systems Science and Engineering [41]. While the model dynamics is well understood in general,
here our main challenge is to estimate model parameters specifically for the COVID-19 outbreak. To that end, we
combined a Bayesian approach — to incorporate prior knowledge — with Markov Chain Monte Carlo (MCMC)
sampling — to explore the parameters. Put simply, we first estimate the parameter distribution that best describes
the observed situation, and then we use many samples from this parameter distribution to evolve the model equations
and thus forecast future developments.

Simple model: SIR model with stationary spreading rate

We consider a time-discrete version of the standard SIR model. In short, we assume that the disease spreads at rate
λ from the infected population stock (I) to the susceptible population stock (S), and that the infected stock recovers
(R) at rate µ. This well-established model for disease spreading can be described by the following set of (deterministic)
ordinary differential equations (see, e.g., Refs [5, 6, 20]). Within a population of size N ,

dS
dt = −λSIN
dI
dt = λSIN − µI
dR
dt = µI .

(1)

As a remark, during the onset phase of an epidemic only a very small fraction of the population is infected (I) or
recovered (R), and thus S ≈ N � I such that S/N ≈ 1. Therefore, the differential equation for the infected reduces
to a simple linear equation, exhibiting an exponential growth

dI

dt
= (λ− µ)I solved by I(t) = I(0) e(λ−µ)t . (2)

Because our data set is discrete in time (∆t =1 day), we solve the above differential equations with a discrete time
step (dI/dt ≈ ∆I/∆t), such that

St − St−1 = −λ∆tSt−1

N It−1 =: −Inewt

Rt −Rt−1 = µ∆tIt−1 =: Rnew
t

It − It−1 =
(
λSt−1

N − µ
)

∆tIt−1 = Inewt −Rnew
t .

(3)

Importantly, It models the number of all (currently) active infected people, while Inewt is the number of new infections
that will eventually be reported according to standard WHO convention. Importantly, we explicitly include a reporting

All rights reserved. No reuse allowed without permission. 
(which was not certified by peer review) is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. 

The copyright holder for this preprintthis version posted April 16, 2020. .https://doi.org/10.1101/2020.04.02.20050922doi: medRxiv preprint 

https://doi.org/10.1101/2020.04.02.20050922


11

delay D between new infections Inewt and newly reported cases (Ct) as

Ct = Inewt−D. (4)

We begin our simulations at time t = 0 with I0 infected cases and start including real-word data of reported cases Ĉt
from day t > D (see below for a parameterization).

Full model: SIR model with change points in spreading rate

Our change point detection builds on a generalization of the simple SIR model with stationary spreading rate.
Instead, we now assume that the spreading rate λi, i = 1, ..., n, may change at certain time points ti from λi−1 to λi,
linearly over a time window of ∆ti days. Thereby, we account for policy changes to reduce λ, which were implemented
in Germany step by step. Thus, the parameters ti, ∆ti, and λi are added to the parameter set of the simple model
above, and the differential equations are augmented by the time-varying λi.

TABLE II. Overview of model parameters.

Variable Parameter
θ = {λi, ti, µ, σ, I0} Set of model parameters that are optimized
λ Spreading rate
µ Recovery rate
λ∗ = λ− µ Effective spreading rate
λi Spreading rate after i-th intervention
ti Time of i-th intervention
σ Scale factor of the width of Student’s t-distribution
N Population size (83.700.000)
St Susceptible at time t
It Infected at time t
Rt Recovered at time t
∆t Time step
Rnew

t = µ∆tIt−1 New recoveries at time t

Inewt = λ∆t
St−1

N
It−1 New infections at time t

Ct = Inewt−D New reported cases at time t
D Delay of case detection

Estimating model parameters with Bayesian MCMC

We estimate the set of model parameters θ = {λi, ti, µ,D, σ, I0} using Bayesian inference with Markov-chain
Monte-Carlo (MCMC). The parameter σ is the scale factor for the width of the likelihood P

(
Ĉt
∣∣θ) between observed

data and model (see below). Our implementation relies on the python package pymc3 [42] with NUTS (No-U-Turn
Sampling) [43]. The structure of our approach is the following:

Choose random initial parameters and evolve according to model equations. Initially, we choose parameters θ from
prior distributions that we explicitly specify below. Then, time integration of the model equations generates a (fully
deterministic) time series of new infected cases C(θ) = {Ct(θ)} of the same length as the observed real-world data

Ĉ =
{
Ĉt

}
.

Iteratively update the parameters using MCMC. The drawing of new candidate parameters and the time integration
of the SIR model is repeated in every MCMC step. The idea is to probabilistically draw parameter updates and to
accept them such that the deviation between the model outcome and the available real-world time-series is likely to
reduce. We quantify the inverse deviation (which needs to be maximized) between the model outcome for one time
point t, Ct(θ) and the corresponding real-world data point Ĉt with the local likelihood

p
(
Ĉt
∣∣θ) ∼ StudentTν=4

(
mean = Ct(θ), width = σ

√
Ct(θ)

)
.

We chose the Student’s t-distribution because it resembles a Gaussian distribution around the mean but features heavy
tails, which make the MCMC more robust with respect to outliers [44]. The case-number-dependent width is motivated
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by the demographic noise of typical mean-field solutions for epidemic spreading, e.g., ρ̇(t) = aρ(t)− bρ2(t) +
√
ρ(t)η(t),

where ρ is the activity and η(t) is Gaussian white noise [35, 36]. This choice is consistent with our data (Fig. 1 A-C).
The overall deviation is then simply the product of local likelihoods over all time points.

For each MCMC step, the new parameters are drawn so that a set of parameters that minimizes the previous
deviation is more likely to be chosen. In our case, this is done with an advanced gradient-based method (NUTS [43]).
To reiterate, every time integration that is performed has its own set of parameters and yields one complete model
time series. If the time integration describes the data well the parameter set is accepted, and this yields one Monte
Carlo sample of the model parameters for the posterior distribution; the MCMC step is then repeated to create more
samples from the posterior. Eventually, the majority of accepted parameter samples will describe the real-world data
well, so that consistent forecasts are possible in the forecast phase.

Forecast using Monte Carlo samples. For the forecast, we take all samples from the MCMC step and continue
time integration according to different forecast scenarios explained below. Note that the overall procedure yields an
ensemble of forecasts — as opposed to a single forecast that would be solely based on one set of (previously optimized)
parameters.

Priors that constrain model parameters

As short-term forecasts are time-critical at the onset of an epidemic, the available real-world data is typically not
informative enough to identify all free parameters, or to empirically find their underlying distributions. We therefore
chose informative priors on initial model parameters where possible and complemented them with uninformative priors
otherwise. Our choices are summarized in Tab. III for the simple model, SIR model with stationary spreading rate for
the exponential onset phase, and in Tab. IV for the full model with change points, and justified in the following.

TABLE III. Priors on the model parameters for the SIR model with stationary spreading rate.

Parameter Variable Prior distribution
Spreading rate λ LogNormal(log(0.4), 0.5)
Recovery rate µ LogNormal(log(1/8), 0.2)

Reporting delay D LogNormal(log(8), 0.2)
Initially infected I0 HalfCauchy(100)

Scale factor σ HalfCauchy(10)

Priors for the simple model (Table III): In order to constrain our simple model, an SIR model with stationary
spreading rate for the exponential onset phase, we chose the following informative priors. Because of the ambiguity
between the spreading and recovery rate in the exponential onset phase (see description of simple model), we chose a
narrow log-normal prior for the recovery rate µ ∼ LogNormal(log(1/8), 0.2) with median recovery time of 8 days [20].
Note that, our implementation of µ accounts for the recovery of infected people and isolation measures because it
describes the duration during which a person can infect others. For the spreading rate, we assume a broad log-normal
prior distribution λ ∼ LogNormal(log(0.4), 0.5) with median 0.4. This way, the prior for λ− µ has median 0.275 and
the prior for the base reproduction number (R0 = λ/µ) has median 3.2, consistent with the broad range of previous
estimates [18, 33, 34]. In addition, we chose a log-normal prior for the reporting delay D ∼ LogNormal(log(8), 0.2) to
incorporate both the incubation time between 1–14 days with median 5 [32] plus a delay from infected people waiting
to contact the doctor and get tested.

The remaining model parameters are constrained by uninformative priors, in practice the Half-Cauchy distribution [45].
The half-Cauchy distribution HalfCauchy(x, β) = 2/πβ[1 + (x/β)2] is essentially a flat prior from zero to O(β) with
heavy tails beyond. Thereby, β merely sets the order of magnitude that should not be exceeded for a given parameter.
We chose for the number of initially infected people in the model (16 days before first data point) I0 ∼ HalfCauchy(100)
assuming an order of magnitude O(100) and below. In addition, we chose of the scale factor of the width of the
likelihood function σ ∼ HalfCauchy(10), which is further multiplied to the number of new cases.
Priors for the full model (Table IV): In order to constrain our full model, an SIR model with change points in

the spreading rate, we chose the same priors as for the simple model but added the required priors associated with
the change points. In general, we assume that each set of governmental interventions (together with the increasing
awareness) leads to a reduction (and not an increase) of λ at a change point. As we cannot know yet the precise
reduction factor, we adhere to assume a reduction by 50%, but always with a fairly wide uncertainty, so that in
principle even an increase at the change point would be possible. We model the time dependence of λ as change points,
and not as continuous changes, because the policy changes were implemented in three discrete steps, which were
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TABLE IV. Priors on the model parameters for the SIR model with change points.

Parameter Variable Prior distribution
Change points t1 Normal(2020/03/09, 3)

t2 Normal(2020/03/16, 1)
t3 Normal(2020/03/23, 1)

Change duration ∆ti LogNormal(log(3), 0.3)
Spreading rates λ0 LogNormal(log(0.4), 0.5)

λ1 LogNormal(log(0.2), 0.5)
λ2 LogNormal(log(1/8), 0.2)
λ3 LogNormal(log(1/16), 0.2)

Recovery rate µ LogNormal(log(1/8), 0.2)
Reporting delay D LogNormal(log(8), 0.2)
Initially infected I0 HalfCauchy(100)

Scale factor σ HalfCauchy(10)

presumably followed by the public in a timely fashion. Continuous changes, originating e.g. from increased awareness
of the population can be accounted for by the discrete steps as well, within the precision of reported cases we have.

For the spreading rates, we chose log-normal distributed priors as in the simple model. In particular, we chose for the
initial spreading rate the same prior as in the simple model, λ0 ∼ LogNormal(log(0.4), 0.5); after the first change point
λ1 ∼ LogNormal(log(0.2), 0.5), assuming the first intervention to reduce the spreading rate by 50% from our initial
estimates (λ0 ≈ 0.4) with a broad prior distribution; after the second change point λ2 ∼ LogNormal(log(1/8), 0.2),
assuming the second intervention to reduce the spreading rate to the level of the recovery rate, which would lead to
a stationary number of new infections. This corresponds approximately to a reduction of λ at the change point by
50%; and after the third change point λ3 ∼ LogNormal(log(1/16), 0.2), assuming the third intervention to reduce the
spreading rate again by 50%. With that intervention, λ3 is smaller than the recovery rate µ, causing a decrease in new
case numbers and a saturation of the cumulative number of infections.

For the timing of change points, we chose normally distributed priors. In particular, we chose t1 ∼
Normal(2020/03/09, 3) for the first change point because on the weekend of March 8, large public events, like
visits to soccer matches or fairs, were cancelled. For the second change point, we chose t2 ∼ Normal(2020/03/16, 1),
because on March 15, the closing of schools and other educational institutions along with the closing of non-essential
stores were announced and implemented on the following day. Restaurants were allowed to stay open until 6 pm.
For the third change point, we chose t3 ∼ Normal(2020/03/23, 1), because on March 23, a far-reaching contact ban
(“Kontaktsperre”), which includes the prohibition of even small public gatherings as well as complete closing of
restaurants and non-essential stores was imposed by the government authorities. Further policy changes may occur in
future; however, for now, we do not include more change points.

The change points take effect over a certain time period ∆ti for which we choose ∆ti ∼ LogNormal(log(3), 0.3) with
a median of 3 days over which the spreading rate changes continuously as interventions have to become effective. The
precise duration of the transition has hardly any affect on the cumulative number of cases (Fig. 2 E-F). We assumed
a duration of three days, because some policies were not announced at the same day for all states within Germany;
moreover, the smooth transition also can absorb continuous changes in behavior.

Model comparison

Since change point detection entails evaluating models with different numbers of parameters, some form of fair
model comparison needs to be performed. Here, we compared the models with different numbers of change points by
their pointwise out-of-sample prediction accuracy using the log-likelihood evaluated at the posterior simulations of the
parameter values obtained from the fitted models. Out-of-sample accuracy was approximated using Leave-one-out
cross-validation (LOO) [37].

∗ viola.priesemann@ds.mpg.de; Authors contributed equally
[1] M. Enserink, K. Kupferschmidt, Science 367, 1414 (2020).
[2] E. T. Jaynes, Probability Theory: The Logic of Science (Cambridge University Press, 2003).
[3] A. Gelman, et al., Bayesian Data Analysis, Third Edition (CRC Press, 2013).

All rights reserved. No reuse allowed without permission. 
(which was not certified by peer review) is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. 

The copyright holder for this preprintthis version posted April 16, 2020. .https://doi.org/10.1101/2020.04.02.20050922doi: medRxiv preprint 

mailto:viola.priesemann@ds.mpg.de
https://doi.org/10.1101/2020.04.02.20050922


14

[4] W. O. Kermack, A. G. McKendrick, G. T. Walker, Proceedings of the Royal Society of London. Series A, Containing Papers
of a Mathematical and Physical Character 115, 700 (1927).

[5] H. Hethcote, SIAM Rev. 42, 599 (2000).
[6] J. Anderson, I. Lampl, I. Reichova, M. Carandini, D. Ferster, Nat. Neurosci. 3, 617 (2000).
[7] N. C. Grassly, C. Fraser, Nat Rev Microbiol 6, 477 (2008).
[8] R. Parshani, S. Carmi, S. Havlin, Phys. Rev. Lett. 104, 258701 (2010).
[9] T. Harko, F. S. N. Lobo, M. K. Mak, Applied Mathematics and Computation 236, 184 (2014).

[10] T. Britton, P. D. O’Neill, Scand J Stat 29, 375 (2002).
[11] J. Lourenço, et al., eLife 6, e29820 (2017).
[12] N. R. Faria, et al., Sci Rep 7, 1 (2017).
[13] B. Shulgin, L. Stone, Z. Agur, Bull. Math. Biol. 60, 1123 (1998).
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SUPPLEMENTARY MATERIAL

TABLE V. Using leave-one-out (LOO) cross-validation, we compare advanced models (SIR with an adapted reporting rate
during weekends, SEIR with explicit incubation time) with the model of the main paper (SIR main). For more details on the
model variants, see the figure captions of the respective models in the SI. Lower LOO-scores represent a better match between
model and data.

Model # c-pts. LOO-score eff. # parameters (pLOO)
SIR main 0 683± 12 4.09
SIR main 1 629± 15 9.98
SIR main 2 608± 16 7.84
SIR main 3 602± 16 9.87
SIR w/ abs-sine mod. weekend 2 596± 16 12.21
SIR w/ abs-sine mod. weekend 3 588± 17 12.24
SEIR 3 613± 15 8.94
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FIG. S1. Inferring (the time of) the change point in spreading rate λ, for the model with only one change point. Please
refer to Fig. 3 for the case with three change points. A: Time-dependent model estimate of the effective growth rate λ∗(t). B:
Forecast and comparison of daily recorded new cases with the model fit. With only one change point, the model cannot describe
the data well after April 1, inset: Same on log log scale. C: Same as B but for cumulative (total) cases. D–F: Posterior
distributions from the change point detection (red) compared to prior distributions (gray). Please refer to Fig. 1 for a more
detailed description of the distributions.
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FIG. S2. Inferring (the time of) change points in spreading rate λ, for the model with two change points. Please refer to
Fig. 3 for the case with three change points. A: Time-dependent model estimate of the effective growth rate λ∗(t). Two change
points are clearly visible. B: Forecast and comparison of daily recorded new cases with the model fit, inset: Same on log log
scale. C: Same as B but for cumulative (total) cases. D–F: Posterior distributions from the change point detection (orange)
compared to prior distributions (gray). Please refer to Fig. 1 for a more detailed description of the distributions.
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FIG. S3. As a check of our main model, we compare with a more complex model: here, we still consider three change points, but
here the fitting does not take into account the case reports obtained on weekends, because these tend to be lower
than during the week. Weekends were simply taken out of the likelihood. A: Time-dependent model estimate of the spreading
rate λt. B: Model forecast of new cases, based on the inferred λt, linear scale (inset: log scale). C: Model forecast of total cases,
based on the inferred λt, linear scale (inset: log-scale). D–F: Comparison of estimated (posterior) parameter distributions with
initially assumed (prior) distributions.
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FIG. S4. Inference with a more involved SEIR-like model. Two additions were made to the SIR-model: (1) It includes
an explicit incubation period during which infected people are not infectious, in the spirit of a SEIR model. In contrast
to usual SEIR models, the length of incubation period is not exponentially distributed but has a lognormal distribution to
match the characteristic incubation time of COVID-19. The incubation period has as prior a normal distribution with median
Normal(5, 1) (days) and a scale parameter σ of 0.418 [32]. (2) People that are infectious are observed with a delay that is
now lognormal distributed. In the prior SIR model we assumed a fixed delay between infection and observation. The delay
has a scale parameter σ of 0.3 and as median a LogNormal(5, 0.2) (days) prior, to match approximately the total delay between
infection and observation of the previous model. We changed the prior for the recovery rate µ to a median of 1/3, which is
similar to other SEIR simulation studies [17]. The priors for λ0 to λ3 were increased to 2,1, 0.5 and 0.25 respectively and a scale
parameter of 1. A: Time-dependent model estimate of the effective growth rate λ∗(t). Note that λ∗(t) in the SEIR-like model is
not directly comparable to λ∗(t) in SIR models, because of the lognormal-distributed incubation period, decreasing the effective
growth rate. B: Comparison of daily recorded new cases and the model, linear scale (inset: log scale). C: Comparison of total
recorded cases and the model, linear scale (inset: log-scale). D–F: Prior and posterior distributions of all free parameters.
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FIG. S5. Inference with the SIR model, as in the main text, but with a weekly modulation of the number of observed
cases, to take into account the fewer number of tests performed on weekends. This was modeled by a multiplication of the
inferred cases by the absolute value of a sine function (one week period). The offset of the sine function was given a flat prior.
The magnitude of the sine function was given a beta-distribution as prior, with mean 0.7 and standard deviation 0.17. A:
Time-dependent model estimate of the effective growth rate λ∗(t). B: Comparison of daily recorded new cases and the model.
Comparison of total recorded cases and the model. C: Model forecast of total cases, based on the inferred λ∗(t). D–F: Prior
and posterior distributions of all free parameters.
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