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The number of new infections per day is a key quantity for effective epidemic management. It
can be estimated by testing of random population samples. Without such direct epidemiological
measurement, other approaches are required to infer whether the number of new cases is likely to
be increasing or decreasing: for example, estimating the pathogen reproductive rate, R, using data
gathered from the clinical response to the disease. For COVID-19 such R estimation is heavily
dependent on modelling assumptions, because the available clinical case data are opportunistic
observational data subject to severe temporal confounding. Given this difficulty it is useful to
reconstruct the time course of infections from the least compromised available data, using minimal
prior assumptions. A Bayesian inverse problem approach applied to UK data on COVID-19 deaths
and the published disease duration distribution suggests that infections were in decline before UK
lockdown, and that infections in Sweden started to decline only a short time later.

Clinical data on the number of cases of COVID-19 are subject to severe temporal confounding, as the
rate of testing and criteria for testing have been changing rapidly on the same time scale as the infections.
Because the ascertainment fraction is changing and unknown, the data can clearly not be used to infer
the actual number of infections. Neither, under normal circumstances, would statisticians recommend
attempting to estimate the reproductive rate of the pathogen from such data, since given the data problems
the estimates must necessarily be driven primarily by the modelling assumptions. Indeed generically it
is often very difficult to infer epidemiological parameters from clinical data, without the results being
informed more by the prior beliefs encoded in the model than by the data (e.g. Wood et al., 2020).

The exception is when clinical data directly measure the quantity of epidemiological interest. This is
the case for deaths with COVID-19 and for fatal disease duration. While not perfect, these data are far
less compromised than the data on ‘cases’. Deaths are reliably recorded, clinical grounds for suspecting
COVID-19 are clear, and good records are kept for fatal cases. It is of some interest to establish what
these high quality data imply about the time course of infections, without strong modelling assumptions.

Two types of daily death data are available. Daily reported deaths (e.g. Worldometer, 2020) typically
show marked weekly fluctuations as a result of weekly patterns in reporting delays, and may exclude
deaths in some locations (such as nursing homes). Registered death data, such as the ONS data in the
UK (Office for National Statistics, 2020), contain deaths in all locations and record exact date of death.
The weekly cycle is less pronounced in these data, but their release is necessarily delayed relative to the
daily reported deaths. Figure 1 shows data for the UK and Sweden.

Data on the incubation period from infection to onset of symptoms are analysed in Lauer et al. (2020).
The period is 2 to 11 days for 95% of people, with a median of 5.2 days. Verity et al. (2020) show that the
distribution of time from onset of symptoms to death for fatal cases can be modelled by a gamma density
with mean 17.8 and variance 71.2 (s.d. 8.44). Note that Verity et al. (2020) correct for the bias associated
with seeing short infections before long ones at the start of an epidemic. Under the assumption that the
incubation period does not differ systematically between fatal and non fatal cases the infection to death
interval can then be well modelled by a gamma density with mean 23 and variance 76.
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Figure 1: Daily reported deaths with COVID-19 (blue) in the UK (left) and Sweden (right) since March
13th. In red is the UK ONS data for England and Wales for all locations of death by registered day of
death, illustrating the lag in reported deaths. The grey regions illustrate 68 and 95% confidence regions
for the underlying reported death rate from model (1). The scaled bar charts are proportional to the
posterior distribution of the day of peak underlying rate according to model (1). The UK lock down
started on day 11. Sweden implemented targeted measures short of lock down.

Models

Let yi denote the deaths or reported deaths on day i. Assume that yi follows a negative binomial distri-
bution with mean µi and variance µi + µ2i /θ. Then let

log(µi) = f(i) + fw(di) (1)

where f is a smooth function of time measured in days, and fw is a zero mean cyclic smooth function of
day of the week, di ∈ {1, 2, . . . , 7}, set up so that f [k]w (0) = f

[k]
w (7), where k = 0, 1 or 2 denotes order of

derivative. f(t) represents the underlying log death rate, while fw describes the weekly variation about
that rate. The functions f and fw can be represented using splines with associated smoothing penalties
λ
∫
f ′′(t)2dt and λw

∫
f ′′w(d)

2dd. Hyper-parameters λ and λw control the smoothness of the functions,
and can be estimated as part of model fitting using a standard empirical Bayes approach (see methods).
This model provides a good fit to both the reported deaths and ONS data. As expected fw is greatly
attenuated for the ONS data.

To estimate the daily infection profile the model must be extended. Consider expressing f(i) in terms
of the time course of earlier infections. Let fc(i) be the function describing the variation in the number
of eventually fatal cases over time. Let B be the square matrix such that Bij = γ(i − j + 1) if i ≥ j
and 0 otherwise, where γ denotes the onset-to-death gamma density (mean 23, variance 76) given above.
If fc = [fc(0), fc(1), . . .]

T and δ = [δ(1), δ(2), . . .]T then δ = Bf c, where δ(i) is the expected number
of deaths on day i. log fc(i) can be represented using a spline basis, again with a cubic spline penalty.
The final model is then obtained by simply substituting f(i) = log δ(i) into (1). B is rank deficient, so
inferring fc can be viewed as an inverse problem: without regularization multiple solutions that oscillate
from day-to-day are possible. This ambiguity is removed by the smoothing penalty on log fc.

Inference about fc was conducted in a fully Bayesian manner using Markov Chain Monte Carlo
methods, exploiting the fact that smoothing penalties can be induced by the adoption of appropriate
Gaussian smoothing priors. It is necessary to infer fc over a considerable period before the first death
occurs. 40 days is clearly sufficient given the form of γ. In fact it makes sense to reduce this interval,
after inspecting a pilot run, to avoid a lengthy initial period of zero fatal cases, consequent lack of
identifiability of log fc and poor MCMC mixing. On this basis a 20 day initial period is more than
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Figure 2: Top left: Inferred daily fatal infection rate, fc, for England and Wales. Light grey and dark grey
regions show 95% and 68% confidence regions, respectively. The black curve is the posterior median
profile. Day 0 is 13th March 2020, and the vertical red line marks the first day of UK lockdown. The
scaled black barchart shows the posterior distribution for day of peak infection. Top right: Consistency
check. In grey are 100 sets of death data simulated forward from the inferred median fatal infection
profile. Blue symbols are the ONS daily death data for England and Wales on which inference is based.
The dashed curves are 95% confidence intervals for underlying death rate estimated by direct fitting of
(1). Bottom left: The inferred fatal infection profile for Sweden, based on reported daily deaths as shown
in figure 1, plotted in the same way as for England and Wales. Bottom right: Inferred instantaneous
intrinsic growth rate of infections, r, for England and Wales, with confidence regions as in the other
plots. The blue line is at r = 0, the boundary between increase and decline in the daily infections.

sufficient. For stable inference it also makes sense to explicitly include in the death data the fact that no
deaths were observed in this initial period.

Results

Figure 2 shows the results of applying the model to the Office for National Statistics daily COVID-19
death data for England and Wales. The data were truncated at May 1st, since comparison of the data
released on 19th of May with that released the previous week suggested that very few more registrations
are now likely for the period before May 1st. Including further data risks exaggerating the rate of decline
in the death rate at the data’s end. The most notable feature of the results is that fatal infections are
inferred to be in substantial decline before lockdown. Sweden appears most likely to have peaked only
a few days later. The profile for Sweden is considerably less certain, as it is based on the reported death
series, which is noisy even allowing for the weekly reporting cycle. It is also likely that the Swedish peak
is estimated a day or two too late as a result of reporting delays.

3



Taken together the results for England and Wales and for Sweden are strongly suggestive that full
lockdown may not have been necessary to avoid health service overload, and more limited measures
might have been effective. This sharply emphasises the desirability of statistically well founded direct
measurement of epidemic size through randomized testing. Had such testing being carried out leading
up to lockdown it would have been clear if the measures preceding lockdown were working, or whether
stronger restrictions were needed. Instead management was reliant on a complex modelling synthesis
of expert judgement and highly problematic clinical case data. Less statistically problematic reconstruc-
tions, like the one presented here, are clearly only possible weeks after the fact.

Figure 2 also plots the instantaneous intrinsic growth rate of daily infections, r, (the time derivative
of log fc(i)). Daily infections increase for r > 0. Over-interpretation of this quantity should be avoided:
conceptually it relates to a single well mixed population: the population was in fact stratified at lockdown.

Model checking

While standard residual checks indicate no problem with the model from the point of view of statistical
fit, there are two issues which could potentially undermine the conclusions.

The first is that the infection to death interval distribution could be systematically wrong. The results
are based on the Verity et al. (2020) point estimates for the fatal disease duration mean and variance,
but shifting the mean infection time down 0.9 to the lower end of their 95% CI simply moves the peak
closer to lockdown by much the same amount, as does reducing it by another 0.9. Against this must
be set the fact that the (Lauer et al., 2020) incubation period used here is some half a day less than is
suggested my a more recent meta-analysis (McAloon et al., 2020), which would tend to push the peak
back. Alternatively, it could be that the onset to death distribution from Verity et al. (2020) gives too long
durations for the UK context. For example, this could happen if age strongly effects time from onset-
to-death and the age structure of the UK cases differs substantially from the age structure of the cases
used by Verity et al. (2020). Similarly within hospital transmission to already very ill patients might lead
to shorter disease duration, and in turn to the peak being estimated as earlier than it was, but the cross
infection rate would have to be quite high for this to be a substantial factor. Another possible problem
could arise if fatal cases have substantially shorter incubation periods than non-fatal cases, but no such
result appears to have been reported.

The second issue is whether the smoothing penalty on log fc would lead to systematic mis-timing
of the estimated peak under the scenario of a very asymmetric peak in the true infection profile around
lockdown. To investigate this, data were simulated from a model in which the underlying infection rate
increased geometrically, doubling every 3 days until lockdown, when the rate dropped immediately to 0.2
of its peak value, shrinking thereafter by 5% per day. Fatal infections were simulated as Poisson deviates
with the given underlying rate. This model is an extreme scenario, in which pre-lockdown measures had
no effect, and the effect of lockdown was instant, as if the locked down population (i.e. those not in
essential work) had isolated alone, rather than increasing their contact with members of their household
while drastically reducing it with everyone else. Under this scenario, the method does indeed tend to
incorrectly estimate the infection peak as 2 to 3 days before lockdown, rather than the day before, as it
struggles to accommodate the drop.

The naive approach to this issue is to introduce a parameter at lockdown representing an instan-
taneous drop in infections. However doing so introduces a very strong structural assumption into the
model, undermining the aim of avoiding strong assumptions. This approach also has the serious side
effect of introducing non-parametric smoothing boundary effects on both sides of the break. These
boundary effects severely compromise inference in the most interesting region of the infection profile,
while simultaneously increasing the importance of the structural assumption at the expense of the data.
Indeed when such a model is built it estimates a large drop even from data simulated from a smooth
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Figure 3: Model checking plots in which the smoothness assumptions are relaxed around lockdown
by a time dilation, in order to allow accurate capture of any extremely discontinuous infection profile
in this region. The top row shows the method reconstructing an extreme simulation scenario in which
there was no reduction in transmission rate up until lockdown, and then an instantaneous drop. Left: the
reconstruction (plot meaning as figure 2) with the true simulated daily infections shown in blue. Right:
forward simulation from the median profile as in figure 2. The blue symbols are the simulated death data
used for inference. The bottom row is for the ONS data under the time dilated model. Even this model
deliberately modified to promote a very abrupt change at lockdown suggests that the infection rate was
probably declining before lockdown.

infection profile. It also estimates such a drop if we move the drop’s location.
A better approach is to use a smooth time-dilation to relax, but not eliminate, the model smoothness

assumptions in the vicinity of lockdown. The dilation is made sufficient that the model can accurately
capture the extreme scenario in the simulation, but without imposing a break and boundary effects. In
particular fc and its smoothing penalty are computed with respect to a version of time which makes the
day before, of and after lockdown count as 3, 5 and 3 days, respectively. Obviously regular un-dilated
time is used for the mapping infections to deaths. For the extreme simulation, the model then gives over
50% posterior probability to the day before lockdown as the peak. In contrast the same model for the
real data has 13% probability of the peak being the day before lockdown, with the remainder earlier. The
posterior expectation is then for a peak 4 days before lockdown.

Figure 3 shows the results from fitting the time dilated model to the extreme simulation scenario and
to the England and Wales ONS data. Even this model, deliberately modified to favour a very abrupt
change at lockdown, suggests that infections started to decline before lockdown.
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Discussion

This paper does not prove that the peak in fatal infections in England and Wales preceded lockdown
by several days. Indeed the failure to undertake the sampling that could have gathered data to directly
measure infections early in the epidemic means that it will never be possible to be certain about timings,
given the severe biases in clinical data other than deaths and fatal disease duration. What the results show
is that, in the absence of strong assumptions, the currently most reliable data strongly suggest that the
decline in infections in England and Wales began before lockdown. Furthermore, such a scenario would
be consistent with the infection profile in Sweden, which began its decline in fatal infections shortly after
the UK, but did so on the basis of measures well short of lockdown.

These facts have implications for the policies to be adopted in the coming autumn, particularly given
the peculiar ethical issues associated with lockdown. For example, plausible estimates of the life loss
burden from an unmitigated COVID-19 epidemic in the UK are about 2 weeks per person1. A plausible
lower bound on the UK life loss from the 2008 financial crisis and its aftermath is 7 weeks per person2.
The economic shock from lockdown is substantially larger than 2008. Similarly the implied willingness
to pay to save a life year from COVID-19 appears to be an order of magnitude higher than the usual UK
National Institute for Health and Care Excellence threshold used for any other disease.

Methods

Direct inference about (1) uses the empirical Bayes approach of Wood et al. (2016) in which the smooth
functions are estimated by penalized likelihood maximisation (e.g. Green and Silverman, 1994), with
the smoothing parameters and θ estimated by Laplace approximate marginal likelihood maximization.
Writing β for the combined vector of basis coefficients for f and fw, the penalized version of the log
likelihood, l(β), can be written

l(β)−
λf
2

∫
f [2](t)2dt− λw

2

∫
f [2]w (d)2dd = l(β)− 1

2
βTSλβ

where Sλ = λfSf + λwSw: Sf and Sw are known constant positive semi-definite matrices. Smoothing
parameters, λf and λw, control the smoothness of f and fw. Let β̂ be the maximizer of the penalized
log likelihood, and H its negative Hessian at β̂. Viewing the penalty as being induced by an improper
Gaussian prior, β ∼ N(0,S−λ ), β̂ is also the MAP estimate of β. Furthermore in the large sample limit

β|y ∼ N(β̂, (H+ Sλ)
−1). (2)

Writing the density in (2) as πg, and the joint density of y and β as π(y,β), the Laplace approximation
to the marginal likelihood for the smoothing parameters λ and θ is π(λ, θ) = π(y,β)/πg(β|y). Nested
Newton iterations are used to find the values of log(λ), θ maximizing π(λ, θ) and the corresponding β̂
(for details see Wood et al., 2016).

Given (2) credible intervals for f are readily computed, but it is also straightforward to make infer-
ences about when the peak in f occurs. Simply simulate replicate coefficient vectors from (2) and find
the day of occurrence of the peak for each corresponding underlying death rate function, f .

In principle the model formulated in terms of fc could be estimated using the framework of Wood
et al. (2016), but some non-trivial computational work would be required to set it up. Instead a fully

1Based on Office for National Statistics (2019) lifetables, the age specific infection fatality ratios of Wood et al. (2020), a
herd immunity fraction of 80% and a lower bound adjustment for co-morbidities based on Hanlon et al. (2020).

2The life expectancy gap between those in the upper and lower half of the UK income scale grew by 14 weeks in the
aftermath of 2008, a loss of life that is difficult to attribute to confounders. See Marmot et al. (2020) especially figure 2.5.
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Bayesian approach was taken and the model implemented using the JAGS software for Gibbs sampling
(Plummer, 2003; Plummer et al., 2006), making use of the automatic code template generation described
in Wood (2016) for reliable implementation of spline smoothers in JAGS. 5×106 samples were generated,
retaining every 500th sample. This was sufficient to ensure effective sample sizes in the hundreds for
even the slowest mixing parameters, while most parameters had effective sample sizes close to 10000.
Trace plots suggested rapid convergence.
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