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a b s t r a c t 

Background: Many studies have examined the effectiveness of non-pharmaceutical interventions (NPIs) 

on SARS-CoV-2 transmission worldwide. However, less attention has been devoted to understanding the 

limits of NPIs across the course of the pandemic and along a continuum of their stringency. In this study, 

we explore the relationship between the growth of SARS-CoV-2 cases and an NPI stringency index across 

Canada before the accelerated vaccine roll-out. 

Methods: We conducted an ecological time-series study of daily SARS-CoV-2 case growth in Canada from 

February 2020 to February 2021. Our outcome was a back-projected version of the daily growth ratio in 

a stringency period (i.e., a 10-point range of the stringency index) relative to the last day of the previ- 

ous period. We examined the trends in case growth using a linear mixed-effects model accounting for 

stringency period, province, and mobility in public domains. 

Results: Case growth declined rapidly by 20–60% and plateaued within the first month of the first wave, 

irrespective of the starting values of the stringency index. When stringency periods increased, changes in 

case growth were not immediate and were faster in the first wave than in the second. In the first wave, 

the largest decreasing trends from our mixed effects model occurred in both early and late stringency 

periods, depending on the province, at a geometric mean index value of 30 �1 out of 100. When compared 

with the first wave, the stringency periods in the second wave possessed little association with case 

growth. 

Conclusions: The minimal association in the first wave, and the lack thereof in the second, is compatible 

with the hypothesis that NPIs do not, per se , lead to a decline in case growth. Instead, the correlations 

we observed might be better explained by a combination of underlying behaviors of the populations 

in each province and the natural dynamics of SARS-CoV-2. Although there exist alternative explanations 

for the equivocal relationship between NPIs and case growth, the onus of providing evidence shifts to 

demonstrating how NPIs can consistently have flat association, despite incrementally high stringency. 

© 2022 The Authors. Published by Elsevier Ltd on behalf of International Society for Infectious Diseases. 

This is an open access article under the CC BY license ( http://creativecommons.org/licenses/by/4.0/ ) 
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ntroduction 

Throughout 2020, non-pharmaceutical interventions (NPIs) 

ere the primary tools employed by governments and 

ublic health agencies to slow the spread of SARS-CoV-2 

 Ferguson et al. 2020 , Koo et al., 2020 ). In Canada, as in many

ther countries, common NPIs included border closures, bans on 

on-essential travel, and mandatory physical distancing measures 

 McCoy et al, 2020 ). However, in contrast to many countries—

articularly those in Europe—the authority and responsibility to 

mplement these policies fall on provincial and territorial gov- 

rnments, meaning there is no formally coordinated response 

etween them ( Cameron-Blake et al., 2021 ). Instead, provincial 

nd territorial responses, like any other large-scale intervention, 

ere contingent upon local political and social contexts, and 

hus contained substantial variability ( McCoy et al, 2020 ). These 

otentially divergent approaches create unique opportunities when 

eeking to evaluate Canada’s pandemic responses in a systematic 

ay. 

Composite measures—which combine a set of indicators into an 

ndex—help abstract away from the subtleties at the sub-national 

evel ( Hale et al., 2021 ). The main strengths of composite indicators 

re that they 1) allow for systematic comparisons across differ- 

nt jurisdictions and 2) permit quantitative comparisons between 

he “intensity” of government responses and spread of infection 

 Hale et al., 2021 ). These strengths inherently contain the concept 

f dose, which can be broadly understood as the “amount” of inter- 

ention provided to a target population ( Rowbothum et al., 2019 ). 

owever, most existing research focuses on isolating the effect of 

ommon individual NPIs ( Haug et al., 2020 , Flaxman et al., 2020 ,

iu et al., 2021 , Li et al., 2020 , Hsiang et al., 2020 , Bendavid et al.,

020 , Küchenhoff et al., 2021 , Berry et al., 2021 ). 

The few studies that have used composite measures show a 

ose-response association between incrementally stringent inter- 

entions and the value of either the effective reproductive num- 

er ( Turbé et al., 2021 ) or the cumulative incidence ( Mezencev and 

lement, 2021 ) of SARS-CoV-2. However, an important challenge 

ith these analyses is that they have focused on the early periods 

f the pandemic—specifically, Europe’s first wave—and they have 

ot recognized that outbreak dynamics are time-varying, where 

lowed transmission will occur without the influence of any NPI 

 Bendavid et al., 2020 ). 

Even with approved COVID-19 vaccines, NPIs are thought to 

emain a crucial component of SARS-CoV-2 control strategies 

 Moore et al., 2021 , Gozzi et al., 2021 ). Thus, quantifying dose

nd dose-response-like relationships through composite measures 

ill be useful for assessing if NPIs correlate with a decline in the 

rowth of SARS-CoV-2. It will also enhance our understanding of 

he different types and timing of NPI “packages,” not only across 

egions within a country but across the temporal span of the pan- 

emic. In this paper, we explore the relationship between a strin- 

ency index of SARS-CoV-2 mitigation strategies and the growth 

f confirmed cases across 5 provinces in Canada, throughout2 epi- 

emic “waves”: spring 2020 (wave 1) and fall-winter 2020/2021 

wave 2). 

ethods 

The conceptual model behind our approach is that be- 

ore meaningful levels of population immunity, individual 

ehavior drives transmission and that the “packages” of 

overnment-mandated NPIs encourage individual behavior change 

 Bendavid et al., 2020 ). We assumed that case growth would 

ncrementally exhibit larger decreases over time as the stringency 

ndex increased: If “less stringent” measures provide small nudges 

o individual behavior, “more stringent” measures will produce 
74 
arger behavioral effects, and thus larger reductions in the growth 

f new cases. Specifically, we anticipated these effects to either 

anifest early—if initial responses were “highly stringent”—or over 

ime—as pandemic responses intensified. 

tudy Design & Surveillance Data 

We conducted a longitudinal study of daily SARS-CoV-2 inci- 

ence during the first and second waves in the Canadian provinces 

f Alberta, British Columbia, Manitoba, Ontario, and Quebec, which 

omprised 95% of all cases in Canada by the start of March 2021. 

he data used in these analyses cover the interval February 28, 

020 to February 15, 2021. 

We obtained the count of daily laboratory-confirmed cases from 

rovincial surveillance databases to calculate the growth ratio of 

ARS-CoV-2: in Alberta, from Alberta Health’s Interactive Aggre- 

ate Data on COVID-19 ( Alberta Health, 2020 ); in British Columbia, 

rom the British Columbia Centre for Disease Control’s COVID-19 

ashboard ( British Columbia Centre for Disease Control, 2021 ); in 

anitoba, from the Province of Manitoba’s Interactive Dashboard 

n COVID-19 ( Manitoba Health 2021 ); in Ontario, from the ICES 

formerly the Institute of Clinical and Evaluative Sciences); and in 

uébec, from the Institut national de santé publique du Québec 

 Institut national de santé publique du Québec 2021 ). In contrast 

o the other four provinces, Québec’s case counts also included 

ases without laboratory confirmation that were epidemiologically 

inked to known SARS-CoV-2 positives. 

Start and end dates of the first wave coincide with each 

rovince accumulating more than 10 cases and the last day be- 

ore the relaxation of restrictions began, respectively; for the sec- 

nd wave, start and end dates coincide with rising case counts in 

arly to late summer through to the trough in case counts after the 

all-winter peak. We excluded all province-days with fewer than 

0 cumulative cases from this analysis because early case counts 

ould have been driven by imported cases rather than local trans- 

ission. 

ata on Non-Pharmaceutical Interventions 

We used data on all NPIs from the Oxford COVID-19 Govern- 

ent Response Tracker (OxCGRT, Hale et al., 2021 ). The project 

as tracked government policies and interventions across a stan- 

ardized series of indicators for over 180 countries and includes 

ubnational jurisdictions within Canada. The tool contains 8 cate- 

ories on containment and closures, 4 on economic policies, and 8 

n health system policies. Most indicators are reported on mono- 

onic ordinal scales, with others coded on continuous scales, allow- 

ng for quantitative analysis of the degree of government response 

 Hale et al., 2021 ). 

The containment and closures indicators used in this analysis 

eflect the more restrictive NPIs and include school and workplace 

losures, cancelling public events, restricting gathering sizes, clos- 

ng public transportation, restrictions on internal movement, and 

ravel controls. A score for each indicator is created by taking an 

rdinal value for that indicator and adding an extra 0 �5 points if 

he policy applies across the entire jurisdiction as opposed to a 

pecific locality. Each indicator is then re-scaled by its maximum 

rdinal value and summed to create a stringency index with scores 

etween 0 and 100. 

obility Data 

We used data from Google’s Community Mobility Reports 

 COVID-19 Community Mobility Reports, 2021 ) to create a mobility 

ovariate for the main analysis (described below). Broadly, these 

ata represent the percent change, from pre-pandemic movement, 
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f where Canadians were going based on a proportion of cell 

hone “pings” across 6 different categories: residential, workplace, 

ransit stations, parks, groceries and pharmacies, and retail and 

ecreation. Apart from “residential,” we averaged the fractional 

hange from baseline (between February 15 and March 11, 2019) 

o represent movement outside people’s homes. 

Because the stringency index and mobility data are likely 

ollinear ( Hale et al., 2021 ), we disentangled their unique contri- 

utions by regressing mobility on the stringency index and substi- 

uted the value of mobility with the residuals of this simple re- 

ression model ( Graham, 2003 ). We linked the surveillance, NPI, 

nd mobility datasets by province and date to generate our work- 

ng dataset. 

utcome Variable 

Similarly to Brown et al. (2021) , we hypothesized that “more 

tringent” NPIs would impact SARS-CoV-2 dynamics in terms of 

hanges in rates, rather than absolute levels of infection. There- 

ore, our outcome was the daily growth rate, g(t) , calculated as 

he ratio of the incident SARS-CoV-2 cases on a given day divided 

y those from the previous day: g(t) = 

I(t) 
I( t−1 ) 

. Because surveillance 

ata are a product of inherent delays related to both the biology 

f infection (e.g., incubation period) and reporting (e.g., cases are 

ot reported by the date they were infected), we produced a back- 

rojected version of the daily growth rate for infections using the 

 package EpiNow2 ( Abbott et al., 2020 ; Figure 1 , panel A). 

Briefly, EpiNow2 uses the distributions of the incubation pe- 

iod, generation time, and the time from symptom onset to report 

ate as part of an inverse convolution to estimate the number of 

nfections per day from the time series of daily reported cases. 

he distributions for the incubation period and generation time 

ere based on well-established values for SARS-CoV-2 ( Lauer et al., 

020 , Ganyani et al., 2020 ), as well as a log-normal distribution for

he reporting delay time with a mean of 0 �84 days and a standard

eviation of 1 �44 days ( Abbott et al., 2020 ). 

nalysis 

We have based our approach on the analysis of 

i et al. (2020) and defined a stringency period as a time through 

hich the stringency index remained within a 10-point range. We 

sed these periods to sub-divide the timeline of each provincial 

pidemic into segments based on the status of the containment 

nd closure NPIs. For each period, we defined a daily growth rate, 

(t) , as the growth rate on the t -th day of that period (i.e., since

he stringency index changed deciles) and g(0) as the growth rate 

f the last day of the previous period (i.e., before new NPIs were 

ntroduced, Figure 1 , panel B). 

Because we also expected any association of NPIs with case 

rowth to be relative to previous periods, we calculated a relative 

rowth ratio between g on day t and g on day 0 as a measure of 

ssociation between NPI stringency and the growth of SARS-CoV-2 

ases. A relative growth ratio larger than 1 indicates an increase 

n transmission since the change in the stringency index, and a 

rowth ratio smaller than 1 indicates a decrease. Based on the 

hange of NPIs between 2 adjacent periods and the correspond- 

ng growth ratio, we were able to observe the behavior associated 

ith incrementally stringent NPIs over time. 

In a descriptive analysis, we first quantified the extent to which 

igher starting values of the stringency index correlate with either 

igh or low values of relative growth ratio using Kendall’s τB . We 

lso described any lagged declines in the relative growth ratio as 

ach province entered different stringency periods. Here, the time- 

ine for all provinces and stringency periods (combined) was strat- 
75 
fied by the first and second waves. For each wave, we plotted a 

ingle loess curve for the longitudinal relative growth ratios. 

In the main analysis, we modeled the relative growth ratio us- 

ng a linear mixed effects modeling approach, with the following 

quation: 

 i j ( t ) = ( β0 + ν0 i + γ0 j ) + ( β1 + ν1 i + γ1 j ) × t i j + β2 M i j , 

here y i j (t) is the relative growth ratio in the i th province, over 

he jth stringency period, on day t . 

As fixed effects, we entered a time trend, t i j , and “residualized”

obility, M i j , (without interaction) into the model. As random ef- 

ects, we had intercepts for province, ν0 i , and stringency period, 

0 j , as well as by-province, ν1 i , and by-stringency slopes across 

ime, γ1 j . Any correlation between relative case growth and the 

alues of stringency index was quantified through the slope term 

 β1 + ν1 i + γ1 j ) of the trending variable, t i j . Using province and 

tringency period as random effects accounts for 2 sources of non- 

ndependence: 1) repeated measures from the same province are 

ore likely to be similar; and 2), the current value of the strin- 

ency index depends on its previous values. 

Similar to Bendavid et al. (2020) , this simple model structure 

alances the strengths of empirical analyses, whereas accounting 

or pre-existing trends that naturally accompany outbreak dynam- 

cs ( Graham, 2003 , Kermack et al., 1927 , Philipson, 20 0 0 ). We fit

 separate models—one for each wave—using the nlme package 

 Pinheiro and Bates, 20 0 0 ) from R statistical software, version 4.1.0 

 R: A language and environment for statistical computing, 2022 ). 

esults 

The epidemic curves in Figure 2 show a first wave of cases con- 

entrated between March and May 2020, with lower numbers of 

ases detected during the summer months, and a much larger sec- 

nd wave between August and September 2020. When compared 

ith the observed cases in each wave, back-projected infections 

eaked earlier in time by 6 to 8 days (in the first wave) and 1 to 14

ays (in the second). Converting the back-projected infections into 

rowth rates demonstrated a shared cumulative decline across all 

rovinces ranging between 20 and 60% ( Figure 3 ). Except for Al- 

erta and Manitoba, these declines stabilized within 1 month of 

arch 11, 2020 and continued into the second wave. 

Tables 1 and 2 contain the results of our descriptive analysis. 

fter each province accumulated 10 reported cases, stringency in- 

ex values ranged from 11 �1 to 56 �5 out of 100, with Manitoba 

ntroducing the largest array of containment and closure policies 

 Table 1 ). When centred on the time to reach 10 cases, there was

ittle correlation between the higher relative starting value of the 

tringency index and the relative differences in daily case growth 

etween Manitoba and the remaining 4 provinces (Kendall’s τ = - 

 �18, p = 1 �00, Table 2 ). 

Any association with introducing new (or intensifying) NPIs 

cross each wave was not immediate ( Figure 4 ). In the first wave,

 local regression curve demonstrates that (on average) the largest 

ssociated decline in the relative growth ratio occurs within the 

rst 9 days of changing stringency periods (left panel). After 10 

ays, relative growth ratios rebounded and plateaued. For the sec- 

nd wave, the largest associated decline occurs more slowly, ap- 

roximately 16 days after changing stringency periods before also 

ebounding (right panel). 

Table 3 and Figure 5 present the results of the mixed effects 

egression analysis. For both waves, a trend model with random 

lopes and intercepts by province and by stringency period con- 

ained more information than a model with only random inter- 

epts (LR = 27 �03, df = 4, p < 0 �0 0 01; LR = 16 �23, df = 4, p

 0 �0 0 01). Each model explained approximately 46% (for the first 
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Figure 1. Schematic diagrams of: (A) Back-projected cases by their estimated date of infection (blue ribbon) versus their date of report (gray bars). Because of delays between 

being infected and confirmed as a case, the back-projected cases occur earlier in time. The light and dark blue ribbons are the 90% and 50% credible intervals, respectively; 

and (B) our calculation of the relative growth ratio. Day t is defined as the t -th day of a stringency period (i.e., since O.S.I changed deciles). Day n represents the last day of 

the period. Note that different stringency periods could have different numbers of days; O.S.I = Oxford Stringency Index; g ( t ) = growth rate on day t . Panel (A) is modified 

from Abbott et al., 2020 Figure 1 . Panel (B) is a modified version of Figure 1 in Li et al., 2020 . 

Table 1 

Survey of individual NPIs that correspond to the stringency index at study inclusion for each province. Individual NPI categories (table columns) and the labels 

linked to the ordinal coding of the intervention (table cells) correspond to those defined in the containment and closure policies of the Oxford COVID-19 Govern- 

ment Response Tracker. 

O.S.I. at 

study 

inclusion 

School 

Closures 

Workplace 

Closures Public Events 

Ban 

Gatherings Stay at Home 

Internal 

Movement 

Travel 

Controls 

Public 

Information 

Manitoba 56 �5 Recommend 

closing 

Recommend 

closing 

Require 

canceling 

11-100 

people 

Recommend 

caution in 

public 

Not recom- 

mended 

Ban 

arrivals 

Urging 

caution 

Alberta 22 �2 Recommend 

canceling 

Quarantine 

arrivals 

Coordinated 

campaigns 

B.C. 22 �2 Recommend 

canceling 

Quarantine 

arrivals 

Coordinated 

campaigns 

Ontario 13 �9 Recommend 

canceling 

Coordinated 

campaigns 

Québec 11 �1 Recommend 

canceling 

Urging 

caution 

O.S.I. = Oxford Stringency Index; B.C. = British Columbia. 

76 
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Figure 2. Epidemic curves of observed cases (gray bars) and the mean back-projected cases (blue line) in 5 Canadian provinces. Because of delays between being infected 

and being confirmed as a case, the back-projected cases occur earlier in time. 

Table 2 

Assessing the correlation between initial values of the stringency index and the daily growth ratio of SARS-CoV-2 cases, 

adjusted for the time to reach 10 cases. 

O.S.I. at study inclusion ∗ % Diff. O.S.I. (vs. MB) # % Diff. g ( t )Median (Q1, Q3) || Kendall’s τ (p-value) 

Manitoba 56 �5 

Alberta 22 �2 -60 �7 5 �7 (-8 �3, 25 �1) -0 �18 (1 �00) 

B.C. 22 �2 -60 �7 -0 �3 (-6 �2, 17 �1) 

Ontario 13 �9 -75 �4 29 �3 (25 �5, 31 �0) 

Québec 11 �1 -80 �4 3 �5 (-0 �7, 54 �7) 

∗ O.S.I. = Oxford Stringency Index; study inclusion: > 10 cases in each province; B.C. = British Columbia. 
# % Difference in O.S.I. = ( O.S. I Other − O.S. I Manitoba ) /O.S. I Manitoba × 100 ; negative values indicate stringency index values at 

study inclusion were lower than Manitoba; MB = Manitoba. 
|| % Difference in daily growth ratio, g(t) = (g (t) Other − g (t) Manitoba ) /g (t) Manitoba × 100 ; where t = 7,…, 53 are the days in 

Manitoba’s data that correspond to study inclusion and the beginning of their relaxation of restrictions; positive values 

indicate median daily growth ratios were higher than Manitoba’s. 
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ave) and 69% (for the second) of the variation in relative case 

rowth by including mixed effects in our model ( Table 3 ). 

Linear trends within stringency periods displayed slopes that 

ere more variable in the first wave than in the second across 

ll provinces ( Figure 5 ). For British Columbia, Ontario, and Que- 

ec, the steepest negative slopes were observed for smaller, early 

alues of the stringency index (ranging between 11 �1 and 29 �2 out 

f 100). These trends also decelerated (i.e., became less negative—

n Ontario), turned upward (in Quebec), or remained nearly un- 

hanged (in British Columbia) as the stringency index increased. In 

lberta and Manitoba, we observed the steepest negative slopes 
77 
or incrementally higher values of the stringency index ranging 

rom 72 �2 out of 100 (in Manitoba) and 75 �9 out of 100 (in Al-

erta). Across all 5 provinces in the first wave, a local regres- 

ion line demonstrates that case growth was initially negative, 

urned positive, and returned to earlier levels across incrementally 

igher values of the stringency index ( Figure 5 , left panel). Over- 

ll, the steepest declines in case growth correspond to a (geomet- 

ic) mean stringency index of 30 �1 out of 100. When compared 

ith the first wave, the stringency periods in the second wave 

ossessed very little association with case growth ( Figure 5 , right 

anel). 
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Figure 3. Growth ratios in cases for the study provinces. The panels below show the daily growth ratio in cases and demonstrate a shared decline in case growth across all 

provinces. The y-axis re-scales the growth ratios against that on the first day after study inclusion. The dashed line represents the average cumulative reduction in growth 

ratio across all provinces in the second wave (20%); Str. Period = Stringency Period. 

Table 3 

The Results of the Linear Mixed Effects Model. 

First Wave Second Wave 

Fixed Effects Estimate 95% CI Estimate 95% CI 

Intercept 0 �965 0 �867, 1 �064 1 �026 0 �981, 1 �071 

Time 0 �000 -0 �002, 0 �002 0 �000 -0 �0002, 0 �0002 

“Residual” Mobility -0 �072 -0 �185, 0 �042 0 �031 0 �005, 0 �057 

Random Effects 

Province 

σIntercept 0 �056 0 �005, 0 �613 0 �013 0 �000, 6 �424 

σTime 0 �001 0 �000, 0 �010 0 �0001 0 �000, 0 �001 

Stringency Index 

σIntercept 0 �151 0 �095, 0 �239 0 �051 0 �019, 0 �132 

σTime 0 �003 0 �001, 0 �005 0 �0002 0 �0001, 0 �0005 

R 2 M 0 �007 0 �004 

R 2 C 0 �463 0 �691 

R 2 M = “Marginal” and R 2 C = “Conditional” coefficients of determination; each, respec- 

tively, represent the amount of variation explained by the fixed effects and with fixed 

and random effects combined ( Nakagawa and Shielzeth, 2013 ). 
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iscussion 

The results presented here demonstrate a limited dose-response 

ssociation between values of the stringency index and growth of 

ARS-CoV-2 cases in the first and second waves across 5 Canadian 

rovinces. The minimal association in the first wave and lack of 

ssociation in the second are compatible with the hypothesis that 

PIs, per se , do not lead to a decline in case growth. These results
78 
ere observed regardless of the initial (or maximum) value of the 

tringency index and are, overall, contrary to what we anticipated. 

t first glance, these findings might suggest that Canada’s pan- 

emic responses were sub-optimal at slowing the spread of SARS- 

oV-2 as the stringency index increased. However, the explanation 

or our results requires nuance that extends beyond a simple di- 

hotomy of whether government mandated NPIs did, or did not, 

ave their intended effects. Instead, other potential explanations 
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Figure 4. Temporal changes in the relative growth ratio following 10-point changes in the stringency index, in each wave, for all provinces combined. For each stringency 

period, the reference point is the day before entering a that period. It is important to note that different stringency periods can have different numbers of days. Because of 

limited data availability, particularly in the first wave, we did not plot timelines longer than 30 days. A locally weighted smoothing function (black line) plots the trend (i.e., 

the average) across each wave. Shaded regions are 95% confidence intervals. Str. Period = Stringency Period. 

Figure 5. Steepness (slope) of relative growth ratio across different stringency periods (i.e., deciles of the Oxford Stringency Index) for each province (colored dots) as 

estimated by the mixed effects regression analysis. Values > 0 (dashed line) indicate increased case growth, and values < 0 indicate decreased growth. Here, the greatest 

decline in growth rate in each province happened with the least stringent measures, at the earliest stages of the pandemic. A locally weighted smoothing function (black 

dotted line) is plotted to visualize trends in the estimated slopes across all provinces. Shaded regions are 95% confidence intervals. 
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nclude how NPIs work across risk factors for onward transmission, 

nd people’s adherence to interventions over time. 

In the first wave, individual NPIs were generally focused on de- 

reasing the risk of community-level spread of SARS-CoV-2. As a 

esult, these early NPIs may have initially benefited those who, 

ith a small reduction in contact, could effectively mitigate nearly 

ll their transmission risks ( Mishra et al., 2020 , Gomes et al., 2021 ).

hen coupled with higher rates of testing and isolation among 

igh-income neighborhoods ( Sundaram et al., 2021 ), the early ben- 

fits may have rapidly saturated among those who could work 

emotely and remain well housed ( Public Health England, 2020 ). 

hus, early NPIs may have eliminated a small risk among many, 

ut could not sufficiently mitigate a large risk among the few 

 Sun et al., 2021 , Cevik and Baral, 2021 ), such as essential workers

nd those employed in public-facing jobs ( Sundaram et al., 2021 , 

aul et al., 2021 , Rao et al., 2021 ). These same justifications also

pply to the results of the second wave, despite starting at higher 

tringency index values than in the first. Although some provinces 

ntroduced new NPIs that targeted “intermediate” per-contact risks 

f transmission, such as extended family contacts ( Sun et al., 2021 ), 

he majority of NPIs simply recommitted to a focus on community 

ontacts. Therefore, the impact of many NPIs in the second wave—

espite being more stringent—speaks more to a mismatch between 

here the largest risk of infection was in the population than how 

estrictive they were. 

Our results are also consistent with other important voluntary 

ehaviors not accounted for by government policies ( Berry et al., 

021 , Goolsbee and Syverson, 2021 ). In our analysis, we accounted 

or 2 sources of people’s movements: those behaviors linked to 

he stringency index, and those that were voluntary. The latter 

as negatively—though not distinguishable from 0 (in the first 

ave)—and positively associated (in the second) with case growth 

 Table 2 ). This observed association has a plausible underlying be- 

avior model indicating that many people were already avoiding 

usier public spaces—voluntarily—before being mandated to do so 

 Bendavid et al., 2020 , Berry et al., 2021 , Goolsbee and Syver-

on, 2021 ). For example, increased mobility may have reallocated 

eople from visiting “non-essential” businesses (bars and restau- 

ants) to “essential” ones (groceries and other food sellers) where 

isk of infection was higher ( Goolsbee and Syverson, 2021 ). In- 

reasingly strict NPIs might also have limited association with case 

rowth if people are less concerned about being infected; reduced 

oncern could lead to a higher likelihood of restrictions getting ig- 

ored ( Goolsbee and Syverson, 2021 ). Restrictions on activity to- 

ard the type of business also induce large reallocations of move- 

ent away from “disallowed” businesses, toward “allowed” ones. 

hus, in contrast to recent work ( Brown et al., 2021 ), our find-

ngs suggest that the limited association between case growth and 

reater stringency cannot be fully explained by changes in mo- 

ility. However, the consistency across provinces—particularly in 

all 2020—is notable, given their diverse geo-political landscapes, 

hich suggests that adherence may have less of an impact than 

ppropriately targeting the risk of onward transmission. 

There are several key limitations to consider when interpreting 

hese results. The first is that our estimates of case growth did not 

ccount for changes in testing regimes, over time. If a province in- 

reased their testing capacity or widened their eligibility criteria, 

e are likely to observe an artificial increase in case growth. A po- 

ential solution is to use other outcomes, such as hospitalization or 

ortality, which are considered less susceptible to testing-related 

iases. However, because NPIs are intended to decrease contact 

ates between individuals in a population, their primary impact, if 

ffective, is on transmission ( Flaxman et al., 2020 ; Ferguson et al., 

020 ). Any impact on hospitalization and mortality will be delayed 

n some cases by several weeks. Previous research has also demon- 

trated that if stricter measures are not correlated with cases, they 
80 
re unlikely to share that correlation with COVID-19 hospitaliza- 

ions and mortality ( Berry et al., 2021 ). If our results have been

iased by under-reporting, we would expect the trend estimates 

cross stringency periods to overstate the correlation between NPIs 

nd case growth. However, the fact that we estimate incrementally 

mall associations between the stringency index and case growth 

uggests that the extent of this bias may also be small. 

Second, the back-projection method we used is an imperfect 

ecreation of the date of infection because it imparts a distribu- 

ional form on the incubation period, generation time, and re- 

orting delay that could vary ( Küchenhoff et al., 2021 ), and may 

ave led to temporal inaccuracies in our back-projected infec- 

ions. Although back-projection methods have been used previ- 

usly to reconstruct incidence curves of other infections, such as 

IV ( Mallitt et al., 2012 , for a discussion), there are currently no 

uitable SARS-CoV-2 data which establish the reliability of these 

ethods, particularly given the correlation between testing vol- 

mes and case counts mentioned above. However, given that back- 

rojection explicitly accounts for delays between infection and di- 

gnosis, we think it lends itself as a reasonable illustration of 

ow such delays can be the crucial difference between well- 

ntentioned policies missing their target and having their desired 

ffect ( Roberts, 1994 , Meadows, 2008 ). 

Third, by using the stringency index as the measure of NPI 

ose, we cannot disentangle which individual NPI is most associ- 

ted with case growth. However, by measuring several NPIs, the 

tringency index mitigates the possibility that any one NPI is over- 

r misinterpreted, while supporting systematic comparisons across 

ub-national regions ( Hale et al., 2021 ). The stringency index does 

ot measure the effectiveness of NPIs nor their costs. And, like all 

ndices, it makes assumptions about what information counts and 

ay introduce measurement bias ( Hale et al., 2021 ). For example, 

t focuses on closures and movement restrictions to contain the 

pread of infection, and thus does not include more “traditional”

PIs, such as testing, contact tracing, and isolation ( Fraser et al., 

004 ). Although this was a limitation, there were consistencies 

cross the 5 provinces, given the federal nature of some laws and 

ecommendations for NPIs including international travel, testing, 

nd contact tracing. 

Fourth, the stringency index does not explicitly include in- 

ormation on vaccine programs that started in Canada in mid- 

ecember 2020. Although not an NPI, vaccination represents a po- 

ential confounder when examining the association between NPI 

tringency and case growth. However, given that only 2 to 4% 

f each province’s population had received at least 1 dose by 

arly February 2021 ( Canadian COVID-19 vaccination coverage re- 

ort, 2021 ), the larger effect of the vaccine programs was likely to 

ave been on decreased mortality, not the spread of infection in 

he second wave. 

A fifth concern is that we have not evaluated the impact of 

PIs through other quasi-experimental approaches, like difference- 

n-differences. The most notable challenge to this approach is 

hat inferences would have been made in the absence of suffi- 

ient amounts of baseline data in the growth of SARS-CoV-2 cases, 

nd that there is direct feedback between intervention and out- 

ome. This means that at least 2 key assumptions of a standard 

ifference-in-differences design are questionable. Finally, because 

e regard this study as an ecological time series analysis, our find- 

ngs do not necessarily imply causation. And although our results 

re supported elsewhere ( Herby et al., 2022 ), we cannot defini- 

ively conclude that incremental increases in the stringency index 

id not have some independent effect on case growth. 

Overall, our analysis provides little evidence that banning public 

atherings, closing schools and universities, placing stay-at-home 

rders, controlling travel, and restricting business hours had any 

bvious association with reducing the growth of SARS-CoV-2 cases 
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n Canada—an observation that aligns with those of previous pan- 

emics ( WHO, 2006 ; Whitelaw, 1919 ). However, we emphasize that 

stimating the effects of NPIs is extremely challenging, and no sin- 

le approach produces irrefutable results. When placed in the con- 

ext of other recent large-scale analyses ( Herby et al., 2022 ), our 

esults have led to similar insights, which is reassuring. Neverthe- 

ess, we do not discount the possibility that alternative approaches 

ay yield different results. Interpreting the lack of association be- 

ween greater NPI stringency and reduced case growth could be 

olstered through de novo data collection exploring voluntary be- 

avior changes and the network structure of human interactions, 

ather than the use of routinely collected surveillance data. 

Ultimately, these findings suggest that the diminished returns 

ssociated with a higher stringency index should signal for bet- 

er understanding of what “works” and “for whom” when it comes 

o mitigating the spread of infection. Although there exist alter- 

ative explanations for the equivocal relationship between strin- 

ency index and case growth (particularly in the second wave), the 

nus of providing evidence shifts to demonstrating how NPIs con- 

istently have flat associations despite intensified stringency. Con- 

inued study of the long-term outcomes of many NPIs, including 

ny adverse costs to society, is needed before similarly aggressive 

easures can be endorsed for future epidemic control. 

onflict of Interests 

Mathieu Maheu-Giroux reports a contractual agreement with 

he Institut national de santé publique du Québec and Institut 

’excellence en sante et en service sociaux. All remaining authors 

eported no competing interests. 

unding 

This work was supported by the Canadian Institutes of Health 

esearch (grant no. VR5-172683). 

thical Approval Statement 

The data used in this study are publicly available aggregated 

i.e., non-identifiable) time series from provincial COVID-19 surveil- 

ance dashboards and the Oxford COVID-19 Government Response 

racker. Under Article 2.2 of Canada’s Tri-Council 2018 Policy 

tatement on the Ethical Conduct for Research Involving Humans, 

hese publicly available datasets do not require Ethics approval 

or access or analysis ( https://ethics.gc.ca/eng/tcps2-eptc2 _ 2018 _ 

hapter2-chapitre2.html ). 

cknowledgements 

This study was supported by ICES, which is funded by an an- 

ual grant from the Ontario Ministry of Health and the Ministry 

f Long-Term Care. The analyses, conclusions, opinions, and state- 

ents expressed herein are solely those of the authors and do not 

eflect those of the funding or data sources; no endorsement is in- 

ended or should be inferred. 

eferences 

bbott S, Hellewell J, Thompson RN, Sherratt K, Gibbs HP, Bosse NI, et al. Estimat-

ing the time-varying reproduction number of SARS-CoV-2 using national and 
subnational case counts [version 2; peer review: 1 approved with reservations]. 

Wellcome Open Res 2020;5:112. doi: 10.12688/wellcomeopenres.16006.2 . 

lberta Health. COVID-19 Alberta Statistics: https://www.alberta.ca/stats/ 
covid- 19- alberta- statistics.htm (Last accessed: 24 August 2021). 

endavid E, Oh C, Bhattacharya J, Ioannidis JPA. Assessing mandatory stay-at-home 
and business closure effects on the spread of COVID-19. Eur J Clin Invest 

2020:e13484. doi: 10.1111/eci.13484 . 
81 
erry CR, Fowler A, Glazer T, Handel-Meyer S, MacMillen A. Evaluating the effects 
of shelter-in-place policies during the COVID-19 pandemic. PNAS 2021;118(15). 

doi: 10.1073/pnas.2019706118 . 
ritish Columbia Centre for Disease Control. BC COVID-19 Data: http://www. 

bccdc.ca/health- info/diseases- conditions/covid- 19/data (Last accessed: 24 Au- 
gust 2021). 

rown KA, Soucy J-PR, Buchan SA, Sturrock SL, Berry I, Stall NM, et al. The mobility
gap: estimating mobility thresholds required to control SARS-CoV-2 in Canada. 

CMAJ 2021;26(193):E592–600. doi: 10.1503/cmaj.210132 . 

ameron-Blake E, Breton C, Sim P, Tatlow H, Hale T, Wood A, et al. Variation in the
Canadian provincial and territorial responses to COVID- 19. Blavatnik School of 

Government Working Paper 2021. www.bsg.ox.ac.uk/covidtracker . 
evik M, Baral SD. Networks of SARS-CoV-2 transmission. Science 

2021;373(6551):162–3. doi: 10.1126/science.abg0842 . 
OVID-19 Community Mobility Reports. Google. Available: www.google.com/ 

covid19/mobility/ (Last accessed: 24 August 2021). 

erguson NM, Laydon D, Nedjati-Gilani G, Imai N, Ainslie K, Baguelin M, et al. Im-
pact of non-pharmaceutical interventions (NPIs) to reduce COVID-19 mortality 

and healthcare demand. London (UK): Imperial College London; 2020 . 
laxman S, Mishra S, Gandy A, Unwin HJT, Mellan TA, Coupland H, et al. Estimating

the effects of non-pharmaceutical interventions on COVID-19 in Europe. Nature 
2020;584:257–61. doi: 10.1038/s41586-020-2405-7 . 

raser C, Riley S, Anderson RM, Ferguson NM. Factors that make an infectious dis- 

ease controllable. PNAS 2004;101(16):6146–51. doi: 10.1073/pnas.0307506101 . 
anyani T, Kremer C, Chen D, Torneri A, Faes C, Wallinga J, et al. Estimating the

generation interval for coronavirus disease (COVID-19) based on symptom onset 
data. Euro Surveil 2020;25(17). doi: 10.2807/1560-7917.ES.2020.25.17.20 0 0257 . 

omes MGM, Corder RM, King JG, Langwig KE, Souto-Maior C, Carneiro J, et al. In-
dividual variation in susceptibility or exposure to SARS-CoV-2 lowers the herd 

immunity threshold. medRxiv 2021. doi: 10.1101/2020.04.27.20081893 . 

oolsbee A, Syverson C. Fear, lockdown, and diversion: comparing 
drivers of pandemic economic decline 2020. J Public Econ 2021;193. 

doi: 10.1016/j.jpubeco.2020.104311 . 
ozzi N, Bajardi P, Perra N. The importance of non-pharmaceutical interven- 

tions during the COVID-19 vaccine rollout. PLoS Comput Biol 2021;17(9). 
doi: 10.1371/journal.pcbi.1009346 . 

raham MH . Confronting multicollinearity in ecological multiple regression. Ecology 

2003;84(11):2809–15 . 
ale T, Angrist N, Goldszmidt R, Kira B, Petherick A, Phillips T, et al. A global

panel database of pandemic policies (Oxford COVID-19 Government Response 
Tracker). Nat Hum Behav 2021;5:529–38. doi: 10.1038/s41562-021-01079-8 . 

aug N, Geyrhofer L, Londei A, Dervic E, Desvars-Larrive A, Loreto V, et al. Ranking
the effectiveness of worldwide COVID-19 government interventions. Nat Hum 

Behav 2020;4:1303–12. doi: 10.1038/s41562-020-01009-0 . 

erby J , Jonung L , Hanke SH . A literature review and meta-analysis of the effects of
lock-downs on COVID-19 mortality. Stud Appl Econom 2022;200:1–62 . 

siang S , Allen D , Annan-Phan S , Bell K , Bolliger I , Chong T , et al . The ef-
fect of large-scale anti-contagion policies on the COVID-19 pandemic. Nature 

2020;584:262–7 . 
 Core Team. R: A language and environment for statistical computing. Vienna, Aus- 

tria: R Foundation for Statistical Computing; 2022 . 
nstitut national de santé publique du Québec. Données COVID-19 au Québec; 2021 

https://www.inspq.qc.ca/covid-19/donnees Last accessed: 24 August . 

ermack WO, McKendrick AG, Walker GT. A contribution to the mathematical the- 
ory of epidemics. Proc R Soc Lond A Math Phys Sci 1927;115(772):700–21. 

doi: 10.1098/rspa.1927.0118 . 
oo JR, Cook AR, Park M, Sun Y, Sun H, Tim JT, et al. Interventions to mitigate

early spread of SARS-CoV-2 in Singapore: a modelling study. Lancet Infect Dis 
2020;20:678–88. doi: 10.1016/S1473-3099(20)30162-6 . 

üchenhoff H, Günther F, Höhle M, Bender A. Analysis of the early COVID-19 epi- 

demic curve in Germany by regression models with change points. Epidemiol 
Infect 2021;14 9:e6 8 1–7. doi: 10.1017/S09502688210 0 0558 . 

auer SA, Grantz KH, Bi Q, Jones FK, Zheng Q, Meredith HR, et al. The incuba-
tion period of coronavirus disease 2019 (COVID-19) from publicly reported con- 

firmed cases: Estimation and application. Ann Int Med 2020;172(9):577e582. 
doi: 10.7326/M20-0504 . 

i Y, Campbell H, Kulkarni D, Harpur A, Nundy M, Wang X, et al. The tem-

poral association of introducing and lifting non-pharmaceutical interven- 
tions with the time-varying reproduction number ( R ) of SARS-CoV-2: a 

modelling study across 131 countries. Lancet Infect Dis 2020;21(2):193–202. 
doi: 10.1016/S1473-3099(20)30785-4 . 

iu Y, Morgenstern C, Kelly J, Lowe R, et al. The impact of non-pharmaceutical inter- 
ventions on SARS-CoV-2 transmission across 130 countries and territories. BMC 

Med 2021;19:40. doi: 10.1186/s12916-020-01872-8 . 

allitt KA , Wilson DP , McDonald A , Wand H . Is back-projection methodology still
relevant for estimating HIV incidence from national surveillance data? Open 

AIDS J 2012;6(Suppl 1):108–11 . 
anitoba Health. Cases and Risk of COVID-19 in Manitoba: https://www.gov.mb.ca/ 

covid19/updates/cases.html (Last accessed: 24 August 2021). 
cCoy LG, Smith J, Anchuri K, Berry I, Pineda J, Harish V, et al. Characterizing 

early Canadian federal, provincial, territorial and municipal nonpharmaceutical 

interventions in response to COVID-19: a descriptive analysis. CMAJ Open 2020. 
doi: 10.9778/cmajo.20200100 . 

eadows D . Why systems surprise us. Thinking in systems. Chelsea Green Publish- 
ing; 2008 . 

https://ethics.gc.ca/eng/tcps2-eptc2_2018_chapter2-chapitre2.html
https://doi.org/10.12688/wellcomeopenres.16006.2
https://www.alberta.ca/stats/covid-19-alberta-statistics.htm
https://doi.org/10.1111/eci.13484
https://doi.org/10.1073/pnas.2019706118
http://www.bccdc.ca/health-info/diseases-conditions/covid-19/data
https://doi.org/10.1503/cmaj.210132
http://www.bsg.ox.ac.uk/covidtracker
https://doi.org/10.1126/science.abg0842
http://www.google.com/covid19/mobility/
https://doi.org/10.1038/s41586-020-2405-7
https://doi.org/10.1073/pnas.0307506101
https://doi.org/10.2807/1560-7917.ES.2020.25.17.2000257
https://doi.org/10.1101/2020.04.27.20081893
https://doi.org/10.1016/j.jpubeco.2020.104311
https://doi.org/10.1371/journal.pcbi.1009346
http://refhub.elsevier.com/S1201-9712(22)00108-4/sbref0018
http://refhub.elsevier.com/S1201-9712(22)00108-4/sbref0018
https://doi.org/10.1038/s41562-021-01079-8
https://doi.org/10.1038/s41562-020-01009-0
http://refhub.elsevier.com/S1201-9712(22)00108-4/sbref0021
http://refhub.elsevier.com/S1201-9712(22)00108-4/sbref0021
http://refhub.elsevier.com/S1201-9712(22)00108-4/sbref0021
http://refhub.elsevier.com/S1201-9712(22)00108-4/sbref0021
http://refhub.elsevier.com/S1201-9712(22)00108-4/sbref0022
http://refhub.elsevier.com/S1201-9712(22)00108-4/sbref0022
http://refhub.elsevier.com/S1201-9712(22)00108-4/sbref0022
http://refhub.elsevier.com/S1201-9712(22)00108-4/sbref0022
http://refhub.elsevier.com/S1201-9712(22)00108-4/sbref0022
http://refhub.elsevier.com/S1201-9712(22)00108-4/sbref0022
http://refhub.elsevier.com/S1201-9712(22)00108-4/sbref0022
http://refhub.elsevier.com/S1201-9712(22)00108-4/sbref0022
http://refhub.elsevier.com/S1201-9712(22)00108-4/sbref0043
https://www.inspq.qc.ca/covid-19/donnees
https://doi.org/10.1098/rspa.1927.0118
https://doi.org/10.1016/S1473-3099(20)30162-6
https://doi.org/10.1017/S0950268821000558
https://doi.org/10.7326/M20-0504
https://doi.org/10.1016/S1473-3099(20)30785-4
https://doi.org/10.1186/s12916-020-01872-8
http://refhub.elsevier.com/S1201-9712(22)00108-4/sbref0030
http://refhub.elsevier.com/S1201-9712(22)00108-4/sbref0030
http://refhub.elsevier.com/S1201-9712(22)00108-4/sbref0030
http://refhub.elsevier.com/S1201-9712(22)00108-4/sbref0030
http://refhub.elsevier.com/S1201-9712(22)00108-4/sbref0030
https://www.gov.mb.ca/covid19/updates/cases.html
https://doi.org/10.9778/cmajo.20200100
http://refhub.elsevier.com/S1201-9712(22)00108-4/sbref0033
http://refhub.elsevier.com/S1201-9712(22)00108-4/sbref0033


D.M. Vickers, S. Baral, S. Mishra et al. International Journal of Infectious Diseases 118 (2022) 73–82 

M

M

M

N

P  

P

P  

P

P

R  

R  

R

S  

S  

T

W

W

ezencev R, Klement C. Stringency of the containment measures in response to 
COVID-19 inversely correlates with the overall disease occurrence over the epi- 

demic wave. medRxiv preprint 2021. doi: 10.1101/2021.01.26.21250501 . 
ishra S, Kwong JC, Chan AK, Baral SD. Understanding heterogeneity to inform 

the public health response to COVID-19 in Canada. CMAJ 2020;192:E684–5. 
doi: 10.1503/cmaj.201112 . 

oore S, Hill EM, Tildesley MJ, Dyson L, Keeling MJ. Vaccination and non- 
pharmaceutical interventions for COVID-19: a mathematical modelling study. 

Lancet Infect Dis 2021;21(6):793–802. doi: 10.1016/S1473-3099(21)00143-2 . 

akagawa S, Shielzeth H. A General and simple method for obtaining R- 
squared from general linear mixed models. Meth Ecol Evol 2013;4:133–42. 

doi: 10.1111/j.2041-210x.2012.00261.x . 
aul LA, Daneman N, Brown KA, Johnson J, van Ingen T, Joh E, et al. Characteristics

associated with household transmission of SARS-CoV-2 in Ontario, Canada: a 
cohort study. Clin Infect Dis 2021 In Press. doi: 10.1093/cid/ciab186 . 

hilipson T. Economic epidemiology and infectious diseases. Handbook of Health 

Economics. Elsevier; 20 0 0. p. 1761–99 . 
inheiro JC , Bates DM . Mixed-effects models in S and SPLUS. New York: Springer;

20 0 0 . 
ublic Health Agency of Canada. Canadian COVID-19 vaccination coverage report. 

Ottawa: Public Health Agency of Canada; 2021 https://health-infobase.canada. 
ca/covid- 19/vaccination- coverage/ . 

ublic Health England Transmission Group. Factors contributing to risk of SARS- 

CoV2 transmission in various settings; 2020 https://bit.ly/3xIbuMM . 
82 
ao A, Ma H, Moloney G, Kwong JC, Juni P, Sander B, et al. A disproportionate epi-
demic: COVID-19 cases and deaths among essential workers in Toronto. Canada. 

Ann Epidemiol 2021 In Press. doi: 10.1016/j.annepidem.2021.07.010 . 
oberts N , Andersen D , Deal RM , Shaffer WA . An introduction to delays, in An In-

troduction to computer simulation: the system dynamics approach. Productivity 
Press; 1994 . 

owbothum S, Conte K, Hawe P. Variation in the operationalisation of 
dose in implementation of health promotion interventions: insights and 

recommendations from a scoping review. Implement Sci 2019;14:56. 

doi: 10.1186/s13012-019-0899-x . 
un K, Wang W, Gao L, Wang Y, Luo K, Ren L, et al. Transmission heterogeneities,

kinetics, and controllability of SARS-CoV-2. Science 2021;371:eabe2424. 
doi: 10.1126/science.abe2424 . 

undaram ME, Calzavara A, Mishra S, Kustra R, Chan AK, Hamilton MA, et al. The in-
dividual and social determinants of COVID-19 in Ontario, Canada: a population- 

wide study. CMAJ 2021;193(20):E723–34. doi: 10.1503/cmaj.202608 . 

urbé H, Bjelogrlic M, Robert A, Gaudet-Blavignac C, Goldman JP, Lovis C. Adap- 
tive time-dependent priors and Bayesian inference to evaluate SARS-CoV-2 pub- 

lic health measures validated on 31 countries. Front Public Health 2021;8. 
doi: 10.3389/fpubh.2020.583401 . 

hitelaw TH . The practical aspects of quarantine for influenza. CMAJ 
1919;9(12):1070–4 . 

orld Health Organization Writing Group. Nonpharmaceutical interventions for 

pandemic influenza, national and community measures. Emerg Infect Dis 
2006;12(1):88–94. doi: 10.3201/eid1201.051371 . 

https://doi.org/10.1101/2021.01.26.21250501
https://doi.org/10.1503/cmaj.201112
https://doi.org/10.1016/S1473-3099(21)00143-2
https://doi.org/10.1111/j.2041-210x.2012.00261.x
https://doi.org/10.1093/cid/ciab186
http://refhub.elsevier.com/S1201-9712(22)00108-4/sbref0040
http://refhub.elsevier.com/S1201-9712(22)00108-4/sbref0040
http://refhub.elsevier.com/S1201-9712(22)00108-4/sbref0040
https://health-infobase.canada.ca/covid-19/vaccination-coverage/
https://bit.ly/3xIbuMM
https://doi.org/10.1016/j.annepidem.2021.07.010
http://refhub.elsevier.com/S1201-9712(22)00108-4/sbref0045
http://refhub.elsevier.com/S1201-9712(22)00108-4/sbref0045
http://refhub.elsevier.com/S1201-9712(22)00108-4/sbref0045
http://refhub.elsevier.com/S1201-9712(22)00108-4/sbref0045
http://refhub.elsevier.com/S1201-9712(22)00108-4/sbref0045
https://doi.org/10.1186/s13012-019-0899-x
https://doi.org/10.1126/science.abe2424
https://doi.org/10.1503/cmaj.202608
https://doi.org/10.3389/fpubh.2020.583401
http://refhub.elsevier.com/S1201-9712(22)00108-4/sbref0050
http://refhub.elsevier.com/S1201-9712(22)00108-4/sbref0050
https://doi.org/10.3201/eid1201.051371

	Stringency of containment and closures on the growth of SARS-CoV-2 in Canada prior to accelerated vaccine roll-out
	Introduction
	Methods
	Study Design & Surveillance Data
	Data on Non-Pharmaceutical Interventions
	Mobility Data
	Outcome Variable
	Analysis

	Results
	Discussion
	Conflict of Interests
	Funding
	Ethical Approval Statement
	Acknowledgements
	References


